RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Tissues toxicity attenuation by vitamin E on oxidative damage induced by diazinon

        Kavoos Tahmasebi,Mahvash Jafari,Javad Heydari,Alireza Asgari,Maryam Salehi,Saeed Khazaie,Mohammad Saleh Abedini 5 환경독성보건학회 2022 환경독성보건학회지 Vol.37 No.4

        Organophosphorus insecticides such as diazinon (DZN) are used worldwide in industry, veterinary practice, and agriculture. They may induce oxidative stress in different tissues. The use of antioxidants can protect tissues against oxidative stress. The aim of this study was to investigate the prophylactic and therapeutic roles of vitamin E against DZN–induced oxidative damage and biochemical alterations in various tissues of male Wistar rats. Thirty rats were divided into five groups: Control group received only corn oil as DZN solvent, DZN group received 100 mg/kg of DZN, E group received 150 mg/kg of vitamin E, E-DZN group received vitamin E and then dosed with DZN and DZN-E group received DZN and then dosed with vitamin E. All injections were carried out intraperitoneally. Plasma and various tissues were prepared and evaluated. Results showed that acute administration of DZN caused a significant induction of oxidative damage in the tested tissues via increased malondialdehyde level and some plasma biochemical indices, depletion of glutathione (GSH), reduced cholinesterase activity and change in the activities of superoxide dismutase, catalase and glutathione-S transferase. Treatment of rats with vitamin E resulted in an elevation in the level of GSH, normalizing the antioxidant enzymes activities and decreasing lipid peroxidation, although all these tests did not return to the normal level in certain tissues. The findings of this study suggest that both prophylactic and therapeutic treatments of rats with vitamin E provide a protective role against DZN-induced oxidative stress and cholinergic hyperactivity through free radicals scavenging and membrane stabilizing.

      • KCI등재

        OPEN ACCESS : Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats

        ( Seyed Reza Emami ),( Mahvash Jafari ),( Rouhollah Haghshenas ),( Aliasghar Ravasi ) 한국운동영양학회 2016 Physical Activity and Nutrition (Phys Act Nutr) Vol.20 No.1

        [Purpose] High-fat diets (HFD) feeding is an important risk factor for obesity that is accompanied with metabolic syndrome. Appropriate exercise is recommended for obesity prevention. The molecular mechanisms and cellular pathways activated in response to HFD and exercise are not well understood. The purpose of this study was to investigate the effect of 8 weeks endurance training on some plasma biochemical parameters and oxidative stress in HFD induced obese rats. [Methods] Twenty-eight male Wistar rats were randomly divided into 4 groups: the standard diet (SD) group, endurance training group with a standard diet (ESD), HFD group, and endurance training group with high-fat diet (EHFD). After 8 weeks, blood samples were taken by cardiac puncture and plasma were used for determination of biochemical parameters and oxidative stress biomarkers. [Results] HFD significantly increased malondialdehyde level and decreased the activities of superoxide dismutase, catalase, and glutathione S-transferase and the content of glutathione in the plasma. HFD also increased activities of aspartate transaminase, alanine transaminase, lactate dehydrogenase, as well as levels of total cholesterol, triglyceride and low-density-lipoprotein-cholesterol. However, endurance training showed protective effect on changes in these parameters. [Conclusion] These findings suggested that HFD alters the oxidant-antioxidant balance, as evidenced by reduction in the antioxidant enzymes activities and glutathione level and enhanced lipid peroxidation. Endurance training can be beneficial for the suppression of obesity-induced oxidative stress in HFD rats through modulating antioxidant defense system and reduces the risk of obesity-associated diseases.

      • KCI등재

        Evaluation of efforts in untrained Wistar rats following exercise on forced running wheel at maximal lactate steady state

        ( Sajjad Rezaei ),( Hamid Agha-alinejad ),( Mahdieh Molanouri Shamsi ),( Mahvash Jafari ),( Fabricio Azevedo Voltarelli ),( Alireza Naderi ),( Conrad Earnest ) 한국운동영양학회 2017 Physical Activity and Nutrition (Phys Act Nutr) Vol.21 No.1

        [Purpose] We aimed to examine the effect of running speed on metabolic responses associated with maximal lactate steady state (MLSS) in rats during forced running wheel (FRW) exercise. [Methods] Forty male adult Wistar rats were divided into seven groups. The blood lactate threshold and peak running speed were determined for an incremental power test group. Five groups participated in constant power tests at intensities 10, 13, 14.5, 16, and 17.5 m/min to determine MLSS and a non-exercise group was chosen as the control. Animals were euthanized immediately after constant power tests and their corticosterone, non-esterified fatty acid (NEFA), blood glucose, and creatine kinase (CK) levels analyzed. The differences among groups were identified by one-way analysis of variance (p < 0.05). [Results] Blood lactate threshold corresponded a running intensity of 15 m/min, while MLSS was determined to be 16 m/min. Serum corticosterone concentrations were significantly higher in 14.5, 16, and 17.5 m/ min groups (298.8±62, 338.3±65, and 354±26 nM, respectively) as compared to that in the control group (210.6±16 nM). Concentrations of NEFA observed in groups 13, 14.5, 16, and 17.5 m/min (662.8±24, 702.35±69, 718.4±34, and 752.8±77 μM, respectively) were significantly higher than those in 10 m/min and control groups (511.1±53 and 412.1±56 μM, respectively). The serum CK concentration recorded for group 17.5 m/min (372.4±56 U/ L) was higher than those recorded for other groups. [Conclusion] The speed above 16 m/min on FRW resulted in increased physiological demands and muscle damage in untrained healthy Wistar rats.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼