RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis

        Lucas Glaucio da Silva,Waleska Rayanne Sizinia da Silva Monteiro,Tiago Medeiros de Aguiar Moreira,Maria Aparecida Esteves Rabelo,Emílio Augusto Campos Pereira de Assis,de Souza Gustavo Torres 한국현미경학회 2021 Applied microscopy Vol.51 No.1

        Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different ( p = 0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promissing statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p < 0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼