RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

        Ren, Siyuan,Xia, Chenyang,Liu, Limin,Wu, Xiaojie,Yu, Qiang The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.4

        Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a $1.54m^2$ full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

      • KCI등재

        Tumor-Associated Macrophages Derived TGF-β-Induced Epithelial to Mesenchymal Transition in Colorectal Cancer Cells through Smad2,3-4/Snail Signaling Pathway

        Jianhui Cai,Limin Xia,Jinlei Li,Shichang Ni,Huayu Song,Xiangbin Wu 대한암학회 2019 Cancer Research and Treatment Vol.51 No.1

        Purpose We investigated the role of tumor-associated macrophages (TAMs) on the epithelial to mesenchymal transition (EMT) of colorectal cancer cells and determined the potential mechanism involved in the metastatic process. Materials and Methods In this study, flow cytometry was used to detect the expression of target proteins. We used transwell assay to evaluate the migration of cancer cells under specific conditions. Using real-time polymerase chain reaction, we examined the expressions of cytokines and EMTrelated markers in mRNA level. Animal assay was performed for analysis in vivo and hematoxylin and eosin was used to visualize the effect of TAMs on tumor metastasis. We also used immunohistochemistry and Western blotting to detect the expression of target proteins. Results Here, we observed enrichment of TAMs in colorectal tumor tissues, resulting in high metastasis in clinical therapy. Moreover, those TAMs could facilitate the EMT progression of colorectal cancer cells, which is induced by the transforming growth factor-β (TGF-β) derived from TAMs, leading to the invasion and migration of cancer cells. Conclusion Our results demonstrated that TAMs contributed the EMT progression through a TGF-β/ Smad2,3-4/Snail signaling pathway, and disrupting this pathway with TGF-β receptor inhibitor could suppress metastasis, readjusting our focus to the connection of TAMs and cancer metastasis.

      • KCI등재

        Cross-Shaped Magnetic Coupling Structure for Electric Vehicle IPT Charging Systems

        Siyuan Ren,Chenyang Xia,Limin Liu,Xiaojie Wu,Qiang Yu 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.4

        Inductive power transfer (IPT) technology allows for charging of electric vehicles with security, convenience and efficiency. However, the IPT system performance is mainly affected by the magnetic coupling structure which is largely determined by the coupling coefficient. In order to get this applied to electric vehicle charging systems, the power pads should be able to transmit stronger power and be able to better sustain various forms of deviations in terms of vertical, horizontal direction and center rotation. Thus, a novel cross-shaped magnetic coupling structure for IPT charging systems is proposed. Then an optimal cross-shaped magnetic coupling structure by 3-D finite-element analysis software is obtained. At marking locations with average parking capacity and no electronic device support, a prototype of a 720*720mm cross-shaped pad is made to transmit 5kW power at a 200mm air gap, providing a 1.54m2 full-power free charging zone. Finally, the leakage magnetic flux density is measured. It indicates that the proposed cross-shaped pad can meet the requirements of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) according to the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA).

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼