RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The Evaluation of Three-Dimensional Effects on Slope Stability by the Strength Reduction Method

        M. K. Kelesoglu 대한토목학회 2016 KSCE JOURNAL OF CIVIL ENGINEERING Vol.20 No.1

        The analysis of slope stability problems may often require considerable attention for 3D effects, such as the curvature of the slope, the contribution of the piles and the local loading of the slope by the structures. In this paper, the effect of each contributing factor on the global stability of a 3D slope was carefully and comprehensively investigated by making use of a field case. However, the conclusions drawn from these analyses are not specific to a single case study. Using a couple of hundred analyses that were run within the context of this paper, some guidelines were provided and the influence of each factor on the factor of safety was clearly stated. The results indicated that, the influence of plan curvature can be defined with a unique relationship based on the factor of safety of the slope which is itself directly proportional to the radius of curvature of the slope. Considering the case of local loading on top of the slope, the loading distance and the size of the numerical domain on the shape of the failure mechanism were investigated in this paper and these effects could be demonstrated in the light of the results. Moreover, the influence of piles on slope stability was studied not only for the common “no surcharge case”, but also for different loading conditions in order to optimize the effective pile location. The effect of the pile cross-sectional shape was also discussed in order to optimize the CPU time. Thus, the results of this study are intended to reveal some key issues and bring insight into the design processes.

      • KCI등재

        Numerical Plane-Strain Modelling of Stone Columns: Installation Process, Single and Group Column Behaviour

        M. Kubilay Kelesoglu,Caner Durmus 대한토목학회 2022 KSCE Journal of Civil Engineering Vol.26 No.8

        The scope of this paper is to emphasize the critical issues related to the axisymmetric and plane-strain modelling of single and group of stone columns constructed to stabilise soft soils. A simple technique based on the expansion of the column shaft was used to simulate the column installation so that the excess pore pressures during this process were calculated for a single column under axisymmetric conditions. Classical cavity expansion theory was also used for the same purpose. The group behaviour of stone columns was discussed by two-dimensional plane–strain numerical models. Plane-strain modelling of stone columns should consider the conversion of stiffness and the drainage properties of the columns and the soft soils to the plane-strain conditions. The validity of two different conversion methods based on the equivalent plane-strain stiffness and equivalent plane-strain permeability coupled with the expansion of the column shaft technique were investigated. An existing well-documented centrifuge test data were used as a reference for numerical models of axisymmetric single column and plane-strain column groups. The measured and calculated results were in good agreement for the case where the finite element model was constituted based on the equivalent plane-strain permeability. The results of this study intend to bring insight to the plane-strain modelling of a group of stone columns.

      • KCI등재

        Effectiveness of low-level laser therapy and chewing gum in reducing orthodontic pain: A randomized controlled trial

        Fatih Celebi,Ali Altug Bicakci,Ufuk Kelesoglu 대한치과교정학회 2021 대한치과교정학회지 Vol.51 No.5

        Objective: The purpose of this study was to evaluate the effects of chewing gum and low-level laser therapy in alleviating orthodontic pain induced by the initial archwire. Methods: Patients with 3–6 mm maxillary crowding who planned to receive non-extraction orthodontic treatment were recruited for the study. Sixty-three participants (33 females and 30 males) were randomly allocated into three groups: laser, chewing gum, and control. In the laser group, a gallium aluminum arsenide (GaAlAs) diode laser with a wavelength of 820 nm was used to apply a single dose immediately after orthodontic treatment began. In the chewing gum group, sugar-free gum was chewed three times for 20 minutes— immediately after starting treatment, and at the twenty-fourth and forty-eighth hours of treatment. Pain perception was measured using a visual analog scale at the second, sixth, and twenty-fourth hours, and on the second, third, and seventh days. Results: There were no statistically significant differences between the groups at any measured time point (p > 0.05). The highest pain scores were detected at the twenty-fourth hour of treatment in all groups. Conclusions: Within the limitations of the study, we could not detect whether low-level laser therapy and chewing gum had any clinically significant effect on orthodontic pain. Different results may be obtained with a higher number of participants or using lasers with different wavelengths and specifications. Although the study had a sufficient number of participants according to statistical analysis, higher number of participants could have provided more definitive outcomes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼