RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A microfluidic electrochemical aptasensor for enrichment and detection of bisphenol A.

        Kashefi-Kheyrabadi, Leila,Kim, Junmoo,Gwak, Hogyeong,Hyun, Kyung-A.,Bae, Nam Ho,Lee, Seok Jae,Jung, Hyo-Il Elsevier 2018 Biosensors & bioelectronics Vol.117 No.-

        <P><B>Abstract</B></P> <P>Bisphenol A (BPA) is an organic monomer used to make common consumer goods such as plastic containers, sports equipment, and cosmetics which are heavily produced worldwide. A growing interest has been drawn to general public as BPA is one of the major endocrine disrupting chemicals threating human health. To date, numerous BPA sensors have been attempted to be developed but important challenges still remained such as limited linearity range, easy to use, and long term response time. To address the present issues, a microfluidic channel should be integrated into an electrochemical aptasensor and it is called Geometrically Activated Surface Interaction (GASI) chip. The vigorous generation of the micro-vortex in the GASI fluidic chamber provides the high collision chances between BPA and anti-BPA aptamer (BPAPT) and consequently more BPA molecules can be captured on the aptasensor surface, which finally results in high sensitivity of the aptasensor. To construct the integrated aptasensor, a miniaturized gold electrode is fabricated using shadow mask and e-beam evaporation process. Afterward, BPAPT is immobilized on a nanostructured gold electrode via thiol chemistry, and other terminus of the aptamer is labeled with a ferrocene (Fc) redox probe. Then, the microfluidic channel is mounted over the miniaturized gold electrode to introduce and enrich BPA to the aptasensor. Upon the specific interaction between BPA and its aptamer, configuration of aptamer is changed so that Fc tag approaches to the electrode surface and direct oxidation signal of Fc and BPA are followed as analytical signals. The unique microfluidic integrated electrochemical aptasensor delivers a wide linear dynamic range over 5 × 10<SUP>–12</SUP> to 1 × 10<SUP>−9</SUP> M, with a limit of detection 2 × 10<SUP>–13</SUP> M. This aptasensor provides a precise platform for simple, selective and more importantly rapid detection of BPA. Such kind of sensing platforms can serve as a fertile ground for designing miniaturized portable sensors.</P> <P><B>Highlights</B></P> <P> <UL> <LI> GASI generates micro-vortex resulting in enhanced capture of BPA and subsequently enhanced sensitivity of the aptasensor. </LI> <LI> The aptasensor has low LOD, wide linear dynamic range and good response time compared to conventional aptasensors. </LI> </UL> </P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼