RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Precision Machining of an Aluminum Alloy Piston Reinforced with a Cast Iron Insert

        Marimuthu Uthayakumar,Gopalakrishnan Prabhakaran,Sivanandham Aravindan,Jonna Venkata Sivaprasad 한국정밀공학회 2009 International Journal of Precision Engineering and Vol.10 No.1

        Bimetallic pistons consisting of aluminum alloy reinforced with a cast iron (CI) insert are used to reduce the weight and improve the wear resistance of pistons. A major problem with machining such bimetallic pistons is producing the desired shape with minimal cutting forces and without damaging the bonding registry. The objective of this paper is to determine the optimal cutting parameters (cutting speed, feed, and depth of cut) for turning bimetallic pistons. When machining, we wish to obtain optimal values of the cutting forces and a better surface integrity while maintaining the required surface finish. Experiments were conducted following Taguchi’s parameter design approach using a cubic boron nitride tool for the machining. The results indicate that the process parameters affected the mean and variance of the cutting force at the Al-CI interface of the piston. The Al-CI interface was examined using an ultrasonic piston bond tester after machining to assure the bond quality. The surface roughness of the components was measured with a surface roughness tester. A mathematical model was developed using the Systat 12.0 software package to establish the relationship between the input quantities (speed, feed, and depth of cut) and the output data (cutting force). The output data of the mathematical model were compared with the experimental results. The results from the Taguchi robust design concept were compared with the results obtained from a nonconventional Genetic Algorithm optimization technique.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼