RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        In Search of Engineered Prokaryotic Chlorophyllases: A Bioinformatics Approach

        Ebrahim Sharafi,Jamshid Farmani,Ali Pakdin Parizi,Ali Dehestani 한국생물공학회 2018 Biotechnology and Bioprocess Engineering Vol.23 No.5

        Chlorophyllase (Chlase) is considered as the first and most important enzyme in chlorophyll degradation pathway. Although there is abundant information regarding plant Chlases and their biological functions, comparatively little is known about their prokaryotic counterparts. In the present study, we employed several bioinformatics tools to assess the phylogenetic relationships in bacterial and cyanobacterial Chlases as well as predicting their molecular and physicochemical properties. The phylogenetic tree analysis classified the bacterial and cyanobacterial chlorophyllases into three distinct clades. All bacterial and cyanobacterial chlorophyllases possessed at least one alpha/ beta hydrolase family domain (pfam12695). Cyanobacterial chlorophyllases pI analysis indicated that they generally have acidic pH, while the pI of bacterial chlorophyllases ranged from acidic (4.58) to highly basic (10.78). Cyanobacterial chlorophyllases generally contained 1 disulfide bond, while bacterial chlorophyllases averagely contained 3 disulfide bonds. Interestingly, while cyanobacterial chlorophyllases contained one or two N-glycosylation sites, bacterial chlorophyllases contained higher numbers of N-glycosylation sites (6 and 7). The findings of the present study would be useful in paving the road for sophisticated engineering of prokaryotic chlorophyllases for biotechnological applications. It was also exhibited that catalytic triad (serine, glutamate or aspartate and histidine) is a critical factor for chlorophyllase activity.

      • SCIESCOPUSKCI등재

        An investigation on the physicochemical characterization of interesterified blends of fully hydrogenated palm olein and soybean oil

        Mahjoob, Raheleh,Nafchi, Abdorreza Mohammadi,Amiri, Elahe Omidbakhsh,Farmani, Jamshid 한국식품과학회 2018 Food Science and Biotechnology Vol.27 No.2

        In this study, the effect of interesterification (using sodium methoxide) on physicochemical characteristics of fully hydrogenated palm olein (FHPO)/soybean oil blends (10 ratios) was investigated. Interesterification changed free fatty acid content, decreased oil stability index, solid fat content (SFC) and slip melting point (SMP), and does not affected the peroxide value. With the increase of FHPO ratio, oil stability index, SFC and SMP increased in both the interesterified and non-interesterified blends. Fats with higher FHPO ratio had narrower plastic range, as well. Compared to the initial blends, interesterified fats had wider plastic ranges at lower temperatures. Both the non-interesterified and interesterified blends showed monotectic behavior. The Gompertz function could describe SFC curve (as a function of temperature, saturated fatty acid (SFA) content or both) and SMP (as a function of SFA) of the interesterified fats with high $R^2$ and low mean absolute error.

      • KCI등재

        An investigation on the physicochemical characterization of interesterified blends of fully hydrogenated palm olein and soybean oil

        Raheleh Mahjoob,Abdorreza Mohammadi Nafchi,Elahe Omidbakhsh Amiri,Jamshid Farmani 한국식품과학회 2018 Food Science and Biotechnology Vol.27 No.2

        In this study, the effect of interesterification (using sodium methoxide) on physicochemical characteristics of fully hydrogenated palm olein (FHPO)/soybean oil blends (10 ratios) was investigated. Interesterification changed free fatty acid content, decreased oil stability index, solid fat content (SFC) and slip melting point (SMP), and does not affected the peroxide value. With the increase of FHPO ratio, oil stability index, SFC and SMP increased in both the interesterified and non-interesterified blends. Fats with higher FHPO ratio had narrower plastic range, as well. Compared to the initial blends, interesterified fats had wider plastic ranges at lower temperatures. Both the non-interesterified and interesterified blends showed monotectic behavior. The Gompertz function could describe SFC curve (as a function of temperature, saturated fatty acid (SFA) content or both) and SMP (as a function of SFA) of the interesterified fats with high R2 and low mean absolute error.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼