RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Temperature-Dependent Adsorption of U(VI) Onto γ-Alumina

        Herath Mudiyanselage Samadhi Kaushalye Herath,Jong-Il Yun 한국방사성폐기물학회 2022 한국방사성폐기물학회 학술논문요약집 Vol.20 No.1

        An elevated temperature is expected at the deep geological repository (DGR) due to the decay heat from spent nuclear fuel and the positive geothermal gradient. The resulting elevated temperature would change the aqueous speciation and surface complexation of uranium, which is the major component in spent nuclear fuel. Since sorption reactions of uranium species on natural minerals determine the extent of uranium retardation, in this work the temperature-dependent adsorption of hexavalent uranium, U(VI), was studied by choosing alumina as the basic component mineral for complex aluminosilicates. Time-resolved laser fluorescence spectroscopy (TRLFS) was used to assess the dissolved and adsorbed U(VI) species on γ-Alumina in the pH range of 6.5–9.0 at temperatures of 25 to 70°C. Initial concentrations of U(VI), carbonate and calcium were 89 μM, 25 mM, and 3.0 mM, respectively. The parallel factor analysis (PARAFAC) was used for chemical speciation by spectrum deconvolution. In addition, a separate solution system with higher U(VI) concentrations (0.1 mM, 1.0 mM) and carbonate concentration of 25 mM was studied with attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy for adsorbed species at 25°C. The electrophoretic mobility measurements were also conducted at 25°C to assess the coordination mechanism of adsorbed species at 25°C. The uranyl hydrolysis species and uranyl tricarbonato species coexist in solution at 25°C. At the same temperature, both species were found to be adsorbed. ATR-FTIR could confirm the adsorption of uranyl tricarbonato species at 25°C, and the electrophoretic mobility measurements suggested that the reaction mechanism is an inner-sphere coordination. However, in comparison with aqueous speciation at 25°C, at elevated temperatures the available pH range of uranyl tricarbonato species was narrow and that for uranyl hydrolysis species was wider. It was evident that two hydrolysis species are adsorbed at elevated temperatures, but no tricarbonato species. The enhanced U(VI) adsorption was observed with temperatures. This could result from the transition of dominance from the concurrent adsorption of uranyl hydrolysis species and uranyl tricarbonato species to two hydrolysis species. It was seen that the trend of enthalpy of adsorption was endothermic. Combining the present results with temperature-dependent adsorption studies on silica and aluminosilicates, a reliable SCM for the subsurface system can be proposed to explain U(VI) migration.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼