RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        Strain Hardening of Red Blood Cells by Accumulated Cyclic Supraphysiological Stress

        Lee, Sung S.,Antaki, James F.,Kameneva, Marina V.,Dobbe, Johannes G.,Hardeman, Max R.,Ahn, Kyung H.,Lee, Seung J. Blackwell Publishing Inc 2007 Artificial Organs Vol.31 No.1

        <P>Abstract: </P><P>The effect of elevated shear stress upon cellular trauma has been studied for many years, but the effect of long-term cyclic stress trauma on hemorheology has never been explored systematically. This study investigated sublytic trauma of red blood cells (RBCs) caused by repeated exposure to shear stress. A suspension of bovine blood was throttled through a capillary tube (inner diameter 1 mm and length 70 mm) connected to a recirculating flow loop. Samples were withdrawn every 30 min to measure deformability and characteristic time. The deformability of the cell was measured microscopically by observing the shape of the cell during the shear flow. It was found that cyclic shear irreversibly stiffened the cell membrane while the effect was not so much as that of continuous shear. The cell deformability was dramatically reduced by 73% when the stress of 300 Pa was applied for 288 s, while it was 7% under 90 Pa. These results elucidate the need for improved models to predict cellular trauma within the unsteady flow environment of mechanical circulatory assist devices.</P>

      • KCI등재후보

        Shear induced damage of red blood cells monitored by the decrease of their deformability

        안경현,이성식,이승종,선경,Petrus T. Goedhart,Max. R. Hardeman 한국유변학회 2004 Korea-Australia rheology journal Vol.16 No.3

        Shear-induced damage of Red Blood Cell (RBC) is an imminent problem to be solved for the practical application of artificial organs in extra corporeal circulation, as it often happens and affects physiological homeostasis of a patient. To design and operate artificial organs in a safe mode, many investigations have been set up to correlate shear and shear-induced cell damage. Most studies were focused on hemolysis i.e. the extreme case, however, it is important as well to obtain a clear understanding of pre-hemolytic mechanical damage. In this study, the change in deformability of RBC was measured by ektacytometry to investigate the damage of RBC caused by shear. To a small magnitude of pre-shear, there is little difference, but to a large magnitude of pre-shear, cell damage occurs and the effect of shear becomes significant depending on both the magnitude and imposed time of shearing. The threshold stress for cell damage was found to be approximately 30 Pa, which is much less than the threshold of mechanical hemolysis but is large enough to occur in vitro as in the extra corporeal circulation during open-heart surgery or artificial heart. In conclusion, it was found and suggested that the decrease of deformability can be used as an early indication of cell damage, in contrast to measuring plasma hemoglobin. As cell damage always occurs during flow in artificial organs, the results as well as the approach adopted here will be helpful in the design and operation of artificial organs.

      • KCI등재

        Central giant-cell granuloma in a patient with neurofibromatosis type 1: 7 years of follow-up

        Michelle Briner Garrido,Rohan Jagtap,Christopher D. Matesi,Vivian Diaz,John Hardeman,Anita Gohel 대한구강악안면외과학회 2024 대한구강악안면외과학회지 Vol.50 No.1

        Neurofibromatosis type 1 (NF1) is an autosomally dominant tumor suppressor syndrome and multisystem disease. Central giant-cell granulomas (CGCGs) can be seen in patients with NF1. A 21-year-old female was diagnosed with two CGCGs, one in the mandible and then one in the maxilla, in a 7-year period. Increased incidence of CGCGs in NF1 patients was thought to be caused by an underlying susceptibility to developing CGCG-like lesions in qualitatively abnormal bone, such as fibrous dysplasia. However, germline and somatic truncating second-hit mutations in the NF1 gene have been detected in NF1 patients with CGCGs, validating that they are NF1-associated lesions. Oral manifestations in patients with NF1 are very common. Knowledge of these manifestations and the genetic link between NF1 and CGCGs will enhance early detection and enable optimal patient care.

      • SCIESCOPUSKCI등재

        Shear induced damage of red blood cells monitored by the decrease of their deformability

        Lee, Sung Sik,Ahn, Kyung Hyun,Lee, Seung Jong,Sun, Kyung,Goedhart, Petrus T.,Hardeman, Max. R. The Korean Society of Rheology 2004 Korea-Australia rheology journal Vol.16 No.3

        Shear-induced damage of Red Blood Cell (RBC) is an imminent problem to be solved for the practical application of artificial organs in extra corporeal circulation, as it often happens and affects physiological homeostasis of a patient. To design and operate artificial organs in a safe mode, many investigations have been set up to correlate shear and shear-induced cell damage. Most studies were focused on hemolysis i.e. the extreme case, however, it is important as well to obtain a clear understanding of pre-hemolytic mechanical damage. In this study, the change in deformability of RBC was measured by ektacytometry to investigate the damage of RBC caused by shear. To a small magnitude of pre-shear, there is little difference, but to a large magnitude of pre-shear, cell damage occurs and the effect of shear becomes significant depending on both the magnitude and imposed time of shearing. The threshold stress for cell damage was found to be approximately 30 Pa, which is much less than the threshold of mechanical hemolysis but is large enough to occur in vitro as in the extra corporeal circulation during open-heart surgery or artificial heart. In conclusion, it was found and suggested that the decrease of deformability can be used as an early indication of cell damage, in contrast to measuring plasma hemoglobin. As cell damage always occurs during flow in artificial organs, the results as well as the approach adopted here will be helpful in the design and operation of artificial organs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼