RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Investigation of shape memory characteristics and production of HfZrTiFeMnSi high entropy alloy by mechanical alloying method

        Güler Ömer,Şimşek Tuncay,Özkul İskender,Avar Barış,Canbay Canan A.,Chattopadhyay Arun K.,Güler Seval H. 한국물리학회 2022 Current Applied Physics Vol.33 No.-

        High entropy alloy (HEA) with shape memory effect (SME) has been the subject of great interest for the past few decades. However, with the increased demands for new materials for high thermal applications, the research activities on the multi elemental high entropy shape memory alloys (HESMA) have been increased by many folds recently. The nano crystalline HEA powder with shape memory effect developed in this study, HfZrTiFeMnSi, was produced by mechanical alloying (MA) for the first time. In this method equiatomic ratio of Hf, Zr, Ti, Fe, Mn, and Si were mixed together and milled by MA process for 100 h. The powder formed was of amorphous in nature. Elemental mapping of the powder from SEM-EDS revealed homogeneity of the alloying elements confirming successful fabrication of HfZrTiFeMnSi HEA powder. The DSC studies from ambient to 500 ◦C of the annealed alloy powders showed reversible austenitic to martensitic (A↔M) transformations. The A↔M transformation hysteresis seemed to vary with the milling time and annealing temperature. The enthalpy values, ΔH, for the transformation were calculated from the DSC plots using tangent method for peak area calculation. Regardless of the annealing temperature, the thermal analysis revealed that the ΔH, equilibrium temperature (T0), and crystallization temperature values decreased with the increasing milling time.

      • KCI등재

        Exploring critical behavioral differences in physical, structural, and nuclear radiation attenuation properties of produced High Entropy Alloy (HEA) and Refractory-High Entropy Alloy (RHEA) samples

        Güler Seval Hale,Güler Ömer,Kavaz E.,Almisned Ghada,Issa Bashar,Tekin H.O. 한국물리학회 2024 Current Applied Physics Vol.58 No.-

        Refractory-High entropy alloys (RHEAs) are known for their exceptional mechanical and radiation-resistant properties, making them promising materials for use in nuclear reactors. Their high entropy composition, which consists of multiple elements in roughly equal proportions, can create a stable microstructure that withstands high levels of radiation damage. The objective of this work is to further our comprehension of the unique behavioral, physical, structural, and nuclear radiation attenuation characteristics shown by High-Entropy Alloys (HEA) and Refractory-High entropy alloy (RHEA) materials. Accordingly, two high entropy alloy (HEA) samples through two different compositions were produced. The first composition under consideration is the typical high-entropy alloy (HEA) defined as MnCrFeNiCoMo0.5. The second composition under consideration is a refractory high entropy alloy (RHEA) characterized by the following elemental composition: TiZrNbHfVTa0.1. SEM and EDX analyses were conducted in terms of determining their physical and structural attributes. Next, a133Ba radioisotope together with a HPGe detector were utilized for gamma-ray transmission experiments. Finally, a241Am/Be source and a gas proportional detector were used for neutron absorption experiments for HEA and RHEA samples. The alloy structures displayed a unique degree of uniformity. Throughout the RHEA phase, the incorporation of refractory elements did not provide any discernible adverse impacts on the physical stability. The counting spectrum provided a clear explanation of the gamma ray absorption features shown by the RHEA (R) sample, highlighting its exceptional absorption properties. Regarding the absorption properties of neutrons, it was observed that RHEA had a comparatively reduced amount of absorption. Therefore, it can be concluded that the basic structure of RHEA grants it superior gamma-ray attenuation qualities compared to HEA. It can be concluded that RHEA demonstrates superior applicability as a material in comparison to HEA, especially in situations involving the use of fuel rods, where maintaining of neutron quantity has paramount importance for achieving optimum neutron activation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼