RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Manufacturing and Optimization the Nanofibres Tissue of Poly(N-vinyl-2-pyrrolidone) - Poly(e-caprolactone) Shell/Poly(N-vinyl-2-pyrrolidone) -Amphotericin B Core for Controlled Drug Release System

        Fataneh Rouhollahi Vernosfaderani,Dariush Semnani 한국섬유공학회 2018 Fibers and polymers Vol.19 No.3

        Controlled release of drugs is important to reduce the amount of medication in treatment of any diseases and improves life quality. Poly(e-caprolactone) (PCL) has a low biodegradation rate that is a disadvantage in the biomedical and pharmaceutical fields. Poly(N-vinyl-2-pyrrolidone) (PVP) is a water-soluble polymer that to overcome of PCL low biodegradation rate, electrospinning of PCL blended with PVP was used for shell of nanofibers with controllable degradation rates and drug release rates. Oral and vaginal mucosal infections mainly caused by candida albicans. It is usually a harmless commensal organism; however it is known as an opportunistic pathogen for almost immunologically week and immune compromised people. Amphotericin-B (AmB) is a strong polyene antifungal antibiotic that has a significantly efficacy on candida albicans. This study is manufactured and optimized the PVP-PCL shell/PVP-AmB core nanofiberous tissue by working distance and feed flow rate for controlled drug release . AmB with PVP was successfully inserted into the core. PVPPCL shell (50/50)/PVP-AmB core nanofiberous were electrospinning with two optimum distances working and two flow rates. The mechanical properties of coaxial nanofibers were analyzed by instron machine. Scanning electron microscopy and transmission electron microscopy was used for analysis morphology. Further, drug release test were done for coaxial nanofibers with AmB different morphologies. The effect of flow rate and working distance on morphology and mechanical properties were evaluated by statistical two-way analysis of the variance (ANOVA). The diameter averages of nanofibers were decreased significantly by increasing working distance. Moreover, the stress and strain were increased by increasing working distance. Coaxial nanofibers biodegradability rate and drug release of nanofibers were increased also by increasing working distance and flow rate of core. Nanofibers drug release mechanism was indicated by Korsmeyer-Peppas which they followed fick′s lows and Higuchi model significantly. Also, results presented that biodegradability and drug release rate accelerate with increasing the working distance and increasing the amount of PVP in core.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼