RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Web-Based Spine Segmentation Using Deep Learning in Computed Tomography Images

        Young Jae Kim,Bilegt Ganbold,Kwang Gi Kim 대한의료정보학회 2020 Healthcare Informatics Research Vol.26 No.1

        Objectives: Back pain, especially lower back pain, is experienced in 60% to 80% of adults at some points during their lives. Various studies have found that lower back pain is a very common problem among adolescents, and the highest incidence rates are for adults in their 30s. There has been a remarkable increase in using computer-aided diagnosis to assist doctors in the interpretation of medical images. Spine segmentation in computed tomography (CT) scans using algorithmic methods allows improved diagnosis of back pain. Methods: In this study, we developed a web-based automatic spine segmentation method using deep learning and obtained the dice coefficient by comparison with the predicted image. Our method is based on convolutional neural networks for segmentation. More specifically, we train a hierarchical data format file using U-Net architecture and then insert the test data label to perform segmentation. Thus, we obtained more specific and detailed results. A total of 344 CT images were used in the experiment. Of these, 330 were used for learning, and the remaining 14 for testing. Results: Our method achieved an average dice coefficient of 90.4%, a precision of 96.81%, and an F1-score of 91.64%. Conclusions: The proposed web-based deep learning approach can be very practical and accurate for spine segmentation as a diagnostic method.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼