RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Multiple genetically engineered humanized microenvironments in a single mouse

        Jungwoo Lee,Dirk Heckl,Biju Parekkadan 한국생체재료학회 2016 생체재료학회지 Vol.20 No.3

        Background: Immunodeficient mouse models that accept human cell and tissue grafts can contribute greater knowledge to human stem cell research. In this technical report, we used biomaterial implants seeded with genetically engineered stromal cells to create several unique microenvironments in a single mouse. The scope of study was focused on human CD34 hematopoietic stem/progenitor cell (HSPC) engraftment and differentiation within the engineered microenvironment. Results: A mouse model system was created using subdermal implant sites that overexpressed a specific human cytokines (Vascular Endothelial Growth Factor A (hVEGFa), Stromal Derived Factor 1 Alpha (hSDF1a), or Tumor Necrosis Factor Alpha (hTNFa)) by stromal cells in a three-dimensional biomaterial matrix. The systemic exposure of locally overexpressed cytokines was minimized by controlling the growth of stromal cells, which led to autonomous local, concentrated sites in a single mouse for study. This biomaterial implant approach allowed for the local analysis of each cytokine on hematopoietic stem cell recruitment, engraftment and differentiation in four different tissue microenvironments in the same host. The engineered factors were validated to have bioactive effects on human CD34+ hematopoietic progenitor cell differentiation. Conclusions: This model system can serve as a new platform for the study of multiple human proteins and their local effects on hematopoietic cell biology for in vivo validation studies.

      • KCI등재

        High-Throughput Production of Microcapsules for Human Bone Marrow Derived Mesenchymal Stem Cell Biomanufacturing in a Vertical-Wheel Bioreactor

        Matthew Teryek,Pankaj Jadhav,Raphaela Bento,Biju Parekkadan 한국생물공학회 2023 Biotechnology and Bioprocess Engineering Vol.28 No.4

        Microencapsulation of human mesenchymal stromal cells (MSCs) via electrospraying has been well documented in tissue engineering and regenerative medicine. Herein, we report the use of microencapsulation, via electrospraying, for MSC expansion using a commercially available hydrogel that is durable, optimized to MSC culture, and enzymatically degradable for cell recovery. Critical parameters of the electrospraying encapsulation process such as seeding density, correlation of microcapsule output with hydrogel volume, and applied voltage were characterized to consistently fabricate cell-laden microcapsules of uniform size. Upon encapsulation, we then verified ~10× expansion of encapsulated MSCs within a vertical-wheel bioreactor and the preservation of critical quality attributes such as immunophenotype and multipotency after expansion and cell recovery. Finally, we highlight the genetic manipulation of encapsulated MSCs as an example of incorporating bioactive agents in the capsule material to create new compositions of MSCs with altered phenotypes.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼