RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • Hydrophobicity in nanocatalysis

        Alimoradlu, Khadijeh,Zamani, Asghar Techno-Press 2022 Advances in nano research Vol.12 No.1

        Nanocatalysts are usually used in the synthesis of petrochemical products, fine chemicals, biofuel production, and automotive exhaust catalysis. Due to high activity and stability, recyclability, and cost-effectiveness, nanocatalysts are a key area in green chemistry. On the other hand, water as a common by-product or undesired element in a range of nanocatalyzed processes may be promoting the deactivation of catalytic systems. The advancement in the field of hydrophobicity in nanocatalysis could relatively solves these problems and improves the efficiency and recyclability of nanocatalysts. Some recent developments in the synthesis of novel nanocatalysts with tunable hydrophilic-hydrophobic character have been reviewed in this article and followed by highlighting their use in catalyzing several processes such as glycerolysis, Fenton, oxidation, reduction, ketalization, and hydrodesulfurization. Zeolites, carbon materials, modified silicas, surfactant-ligands, and polymers are the basic components in the controlling hydrophobicity of new nanocatalysts. Various characterization methods such as N2 adsorption-desorption, scanning and transmission electron microscopy, and contact angle measurement are critical in the understanding of hydrophobicity of materials. Also, in this review, it has been shown that how the hydrophobicity of nanocatalyst is affected by its structure, textural properties, and surface acidity, and discuss the important factors in designing catalysts with high efficiency and recyclability. It is useful for chemists and chemical engineers who are concerned with designing novel types of nanocatalysts with high activity and recyclability for environmentally friendly applications.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼