RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Emissions of Volatile Organic Compounds from Dairy Cattle Manure in a Cattle Shed in Japan

        Arika Aizawa,Akane Miyazaki,Nobuyuki Tanaka KOSAE·JSAE·CSES-CSAE 2022 Asian Journal of Atmospheric Environment (AJAE) Vol.16 No.3

        The livestock industry is a major source of atmospheric volatile organic compounds (VOCs), but details on these emissions are not well documented in Japan. In particular, it remains unclear how the rearing method affects the emissions of VOCs from livestock, which originate primarily from feces and urine. Here we aimed to estimate the amounts of VOCs emitted from the feces and urine of tethered Holstein dairy cattle in a cattle shed in Japan. Dimethyl sulfide and acetone accounted for about 60% of the total VOCs emitted from feces, followed by formaldehyde and acetaldehyde. Also, dimethyl sulfide and acetone were the dominant VOCs emitted from urine, accounting for 90% of the total VOCs. The VOCs from manure were considered to be emitted between the excretion and removal of the manure during the cleaning of the shed. As a result of analyzing images from three cameras installed in the shed, the average time between excretion and cleaning during the daytime (8:00 am-5:00 pm) was 80 min for feces and urine, whereas at night (5:00 pm-7:00 am), the average time between excretion and cleaning was 480 min. Based on the above findings, the emissions of VOCs in the interval between excretion and cleaning of the shed were estimated. As a result, the emissions of VOCs from feces and urine per head of cattle in the shed were estimated to be 1.75 and 1.52 g day<SUP>-1</SUP>, respectively. Furthermore, contribution of VOCs emitted from manure to odor activity value (OAV) and hydroxyl radical reactivity (OHR) were also estimated. Volatile fatty acids and sulfur compounds emitted from feces estimated to have high contribution to OAV, whereas aldehydes contributed mainly for OHR from manure.

      • KCI등재

        Emissions of Volatile Organic Compounds from a Swine Shed

        Nao Osaka,Akane Miyazaki,Nobuyuki Tanaka 한국대기환경학회 2018 Asian Journal of Atmospheric Environment (AJAE) Vol.12 No.2

        The concentrations and chemical compositions of volatile organic compounds (VOCs), including volatile fatty acids, phenols, indoles, aldehydes, and ketones, which are the main organic compounds generated by swine, were investigated in July and October 2016 and January 2017. In addition, the emission rates and annual emissions of these components from the swine shed were estimated. The concentrations of VOCs in the swine shed averaged 511.3 μg m-3 in summer, 315.5 μg m-3 in fall and 218.6 μg m-3 in winter. Acetone, acetic acid, propionic acid, and butyric acid were the predominant components of the VOCs, accounting for 80-88% of the total VOCs. The hourly variations of VOC concentrations in the swine shed in fall and winter suggest that the VOC concentrations were related to the ventilation rate of the swine shed, the activity of the swine, and the temperature in the swine shed. Accordingly, the emission rates of VOCs from the swine shed were 1-2×103 μg (h kg-swine)-1.

      • KCI등재

        Emissions of Volatile Organic Compounds from a Hen Shed in Japan

        Nobuyuki Tanaka,Megumi Ohtsu,Akane Miyazaki 한국대기환경학회 2020 Asian Journal of Atmospheric Environment (AJAE) Vol.14 No.3

        To clarify the emissions of volatile organic compounds (VOCs) from hen rearing in Japan, we collected air samples from inside a hen shed for the four seasons in 2019 and analyzed 34 VOCs in the air samples by gas chromatography-mass spectrometry and high performance liquid chromatography. The temperature and humidity inside and outside of the shed were monitored simultaneously during each sampling campaign. The average concentrations of VOCs in the shed ranged from 150 to 427 µg m-3 , the concentrations being higher in summer and lower in winter. Acetone, dimethyl sulfide, 2-butanone, 2-pentanone, and acetic acid were dominant throughout all the seasons and these five compounds accounted for 70-89% of the total VOCs. The reactivity of each VOC with hydroxyl radical was also calculated and dimethyl sulfide was found to be the most reactive VOC, accounting for 84-94% of the total hydroxyl radical reactivity. The emission rate (ER) for the total VOCs(µg h-1 kg-1 ) was 602 in winter, 7,900 in spring, 46,500 in summer and 37,600 in autumn, respectively. Acetone, dimethyl sulfide, 2-butanone, 3-pentanone and acetic acid had higher ERs throughout all the seasons, and these five components accounted for 70-90% of the ERs for the total VOCs. The ERs of the VOCs increased exponentially in accord with temperature increases inside the shed, indicating that the ERs of the VOCs depended on the ambient temperature. The annual VOC emission from one hen and from the hen shed was calculated to be 405 g y-1 and 121 kg y-1 , respectively.

      • KCI등재

        Emissions of Volatile Organic Compounds from a Dairy Cattle Shed in Japan

        Nobuyuki Tanaka,Kaede Moriyama,Megumi Ohtsu,Akane Miyazaki 한국대기환경학회 2019 Asian Journal of Atmospheric Environment (AJAE) Vol.13 No.3

        To clarify the nature and characteristics of volatile organic compounds (VOCs) emitted from dairy cattle within a cattle shed located in Chiba, Japan, air samples were collected and analyzed for the four seasons in 2017-2018. Thirty-four VOCs were determined by gas chromatography-mass spectrometry and high performance liquid chromatography. In addition, air temperature and relative humidity inside and outside of the shed were monitored during each sampling campaign to estimate the ventilation rate of the shed. The average concentrations of total VOCs (μg m-3) in the shed in each season were 50.5 (spring), 128.4 (summer), 168.8 (autumn), and 199.5 (winter). Ketones were always the most dominant components followed by alcohols and volatile fatty acids (VFAs). The sum of ketones, alcohols, and VFAs accounted for more than 80% of the total VOCs in all seasons. Acetone, 3-pentanone, 1-butanol, and acetic acid were the major components regardless of the season, accounting for more than 60% of the total VOCs. The average emission rates of total VOCs from the shed (μg h-1 kg-1) were calculated to be 623 (spring), 1520 (summer), 585 (autumn) and 469 (winter). The emission rates of almost all the VOCs except alcohols increased exponentially with increase of air temperature in the shed. The ranges of the emission rates for each class of chemical (μg h-1 kg-1) were 39-170 (VFAs), 247-913 (ketones), 65-134 (alcohols), 40-122 (phenols), 10-122 (aldehydes), 4.17- 22.3 (sulfur compounds), and 0.0067-0.74 (indoles). Furthermore, the annual emissions of VOCs for a single dairy cattle and for the cattle shed were estimated to be 5.5 kg and 44 kg, respectively.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼