RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT

        Ehsan Arshid,Ahmad Reza Khorshidvand,S. Mahdi Khorsandijou 국제구조공학회 2019 Structural Engineering and Mechanics, An Int'l Jou Vol.70 No.1

        Using the classical, first order and third order shear deformation plates theories the motion equations of an undrained porous FG circular plate which is located on visco-Pasternak elastic foundation have been derived and used for free vibration analysis thereof. Strains are related to displacements by Sanders relationship. Fluid has saturated the pores whose distribution varies through the thickness according to three physically probable given functions. The equations are discretized and numerically solved by the generalized differential quadrature method. The effect of porosity, pores distribution, fluid compressibility, viscoelastic foundation and aspect ratio of the plate on its vibration has been considered.

      • A shooting method for buckling and post-buckling analyses of FGSP circular plates considering various patterns of Pores' placement

        Khaled Alhaifi,Ahmad Reza Khorshidvand,Murtadha M. Al-Masoudy,Ehsan Arshid,Seyed Hossein Madani 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.3

        This paper studies the effects of porosity distributions on buckling and post-buckling behaviors of a functionally graded saturated porous (FGSP) circular plate. The plate is under the uniformly distributed radial loading and simply supported and clamped boundary conditions. Pores are saturated with compressible fluid (e.g., gases) that cannot escape from the porous solid. Elastic modulus is assumed to vary continuously through the thickness according to three different functions corresponding to three different cases of porosity distributions, including monotonous, symmetric, and asymmetric cases. Governing equations are derived utilizing the classical plate theory and Sanders nonlinear strain-displacement relations, and they are solved numerically via shooting method. Results are verified with the known results in the literature. The obtained results for the monotonous and symmetric cases with the asymmetric case presented in the literature are shown in comparative figures. Effects of the poroelastic material parameters, boundary conditions, and thickness change on the post-buckling behavior of the plate are discussed in details. The results reveal that buckling and post-buckling behaviors of the plate in the monotonous and symmetric cases differ from the asymmetric case, especially in small deflections, that asymmetric distribution of elastic moduli can be the cause.

      • Large deflection analysis of functionally graded saturated porous rectangular plates on nonlinear elastic foundation via GDQM

        Khaled Alhaifi,Ehsan Arshid,Ahmad Reza Khorshidvand 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.39 No.6

        In the current study, large deflection analysis of a functionally graded saturated porous (FGSP) rectangular plate subjected to transverse loading which is located on a nonlinear three-parameter elastic foundation is provided. The constitutive law for the porous materials is written based on Biot’s model which considers the effect of fluids within the pores. The mechanical properties of the plate are changed through its thickness according to different functions which are called porosity distributions. The shear deformation effects are taken into account, accordingly, the first-order shear deformation theory (FSDT) is used to describe the displacement components of the plate. Employing the Minimum total potential energy principle and calculus of variation, the governing equations, and associated boundary conditions are extracted. A generalized differential quadrature method (GDQM) is used to solve them for various boundary conditions. The results for the simpler state are validated with the previously published works and then the effects of different parameters on the deflection of the plate are investigated. It is seen increasing the porosity and Skempton coefficient, enhances and reduces the deflection of the structure, respectively. The results of this study may help to design and manufacture more reliable engineering structures that are exposed to loads.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼