RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        PD 제어기를 이용한 호버링 AUV의 깊이 제어

        배설봉,신동협,주문갑 한국정보기술학회 2014 한국정보기술학회논문지 Vol. No.

        In this paper, we propose a PD controller to control the depth of the hovering AUV(autonomous underwater vehicle). Developed test-bed of AUV has the vertical thruster and azimuth thrusters, where the vertical thruster to control pitch is located rear of test-bed and each azimuth thruster to control depth and speed is located on each side of test-bed. An IMU and a depth sensor are used to measure the posture and the depth of test-bed. Controller of azimuth thruster is composed of a heading PD controller and a depth PD controller. Propulsion and direction of azimuth thruster is determined by vector sum of heading controller and depth controller. The performance of the controller is verified through the experiment under disturbance. Experimental results show that the depth of the test bed is controlled within the error range of 0.1m. 본 논문에서는 호버링 자율 무인 잠수정의 깊이 제어를 위한 PD 제어기를 제안한다. 개발된 잠수정 테스트베드는 pitch를 제어하기 위해 후미에 설치된 한 개의 수직 방향 추진기와 깊이 및 추진속도를 제어하기 위해 양 옆에 설치된 한 쌍의 전방위 추진기를 가지고 있다. IMU와 깊이 센서를 통하여 테스트베드의 자세와 깊이를 측정한다. 전방위 추진기의 제어기는 진행 방향으로의 위치를 제어하기 위한 PD 제어기와 깊이 방향으로의 위치를 제어하기 위한 PD 제어기로 각각 구성하고, 이의 벡터합을 통하여 전방위 추진기의 추진 방향과 추진력을 결정한다. 제어기의 성능은 인위적인 외란을 주며 목표 깊이를 유지하는 실험을 통하여 검증하였다. 실험 결과 테스트베드의 깊이가 오차 범위 0.1m 이내로 제어되는 것을 확인하였다.

      • KCI등재

        칼만 필터를 이용한 이동 로봇의 간이 복합 항법 시스템 설계

        배설봉,김민지,신동협,권순태,백운경,주문갑 대한임베디드공학회 2014 대한임베디드공학회논문지 Vol.9 No.5

        In this paper, a simple version of the hybrid navigation system using Kalman filter is proposed. The implemented hybrid navigation system is composed of a GPS to measure the position and the velocity, and a IMU(inertial measurement unit) to measure the acceleration and the posture of a mobile robot. A discrete Kalman filter is applied to provide the position of the robot by fusing both of the sensor data. When GPS signal is available, the navigation system estimates the position of the robot from the Kalman filter using position and velocity from GPS, and acceleration from IMU. During the interval until next GPS signal arrives, the system calculates the position of the robot using acceleration from IMU and velocity obtained at the previous step. Performance of the navigation system is verified by comparing the real path and the estimated path of the mobile robot. From experiments, we conclude that the navigation system is acceptable for the mobile robot.

      • KCI등재

        무인잠수정의 LQR 제어기 설계

        배설봉(Seol B. Bae),신동협(Dong H. Shin),권순태(Soon T. Kwon),주문갑(Moon G. Joo) 제어로봇시스템학회 2014 제어·로봇·시스템학회 논문지 Vol.20 No.2

        In this paper, An LQR controller is proposed for way-point tracking of AUV (Autonomous Underwater Vehicle). The LQR controller aims at tracking a series of way-points which operator registers arbitrarily in advance. It consists of a depth controller and a steering controller and AUV"s surge speed is assumed varying to consider the dynamic environment of the underwater. In order to show the performance, a conventional state feedback controller is compared with the proposed controller by the simulation using Matlab/Simulink. The parameters of AUV developed by the author"s laboratory are used. In the simulation, we verify that the LQR controller can track all the way-points within 1 m error range under the varying surge speed, which proves the robustness of the LQR controller.

      • KCI등재

        무인잠수정의 적분 상태 궤환 제어기 설계 및 경유점 추적 연구

        배설봉(Seol B. Bae),신동협(Dong H. Shin),박상홍(Sang H. Park),주문갑(Moon G. Joo) 제어로봇시스템학회 2013 제어·로봇·시스템학회 논문지 Vol.19 No.8

        A state feedback controller with integration of output error is proposed for way-point tracking of an AUV (Autonomous Underwater Vehicle). For the steering control on the XY plane, the proposed controller uses three state variables (sway velocity, yaw rate, heading angle) and the integral of the steering error, and for the depth control on the XZ plane, it uses four state variables (pitch rate, depth, pitch angle) and the integral of the depth error. From the simulation using Matlab/Simulink, we verify that the performance of the proposed controller is satisfactory within an error range of 1m from the target way-point for arbitrarily chosen sets of consecutive way-points.

      • KCI등재

        PD 제어기를 이용한 호버링 AUV의 깊이 제어

        배설봉(Seol B. Bae),신동협(Dong H. Shin),주문갑(Moon G. Joo) 한국정보기술학회 2014 한국정보기술학회논문지 Vol.12 No.6

        In this paper, we propose a PD controller to control the depth of the hovering AUV(autonomous underwater vehicle). Developed test-bed of AUV has the vertical thruster and azimuth thrusters, where the vertical thruster to control pitch is located rear of test-bed and each azimuth thruster to control depth and speed is located on each side of test-bed. An IMU and a depth sensor are used to measure the posture and the depth of test-bed. Controller of azimuth thruster is composed of a heading PD controller and a depth PD controller. Propulsion and direction of azimuth thruster is determined by vector sum of heading controller and depth controller. The performance of the controller is verified through the experiment under disturbance. Experimental results show that the depth of the test bed is controlled within the error range of 0.1m.

      • KCI등재

        이동 로봇 제어를 위한 안드로이드 스마트폰 어플리케이션 개발

        김민지,배설봉,주문갑,이원창 한국정보기술학회 2014 한국정보기술학회논문지 Vol. No.

        In this paper, we propose an Android smartphone application to control the posture of mobile robots. The Android smartphone application transmits various commands of posture to a mobile robot by Bluetooth communication. The posture commands are perceived from user motion by collecting data values from acceleration sensor and orientation sensor in the Android smartphone. Pseudo-augmented reality is aimed, where the user is controlling and observing the mobile robots through a camera screen displaying the robot information together, to prevent dispersion of the user's sight. Experiment using a mobile car and a mobile ship shows 91.53% recognition rate of the posture command by the posture of Android smartphone. 본 논문에서는 이동 로봇의 자세를 제어하기 위한 안드로이드 스마트폰 어플리케이션을 개발하였다. 안드로이드 스마트폰 어플리케이션은 이동 로봇의 컨트롤러 역할을 하며, 블루투스 통신을 통해 이동 로봇에게 자세 명령을 전달한다. 자세 명령은 안드로이드 스마트폰의 방향 센서와 가속도 센서의 데이터 값의 변화에 따라 인식되어 이동 로봇에 전달된다. 제안된 방법에서는 증강 현실 기법을 사용하여 사용자가 스마트폰의 정보가 같이 표시되는 카메라 화면을 통하여 이동 로봇을 주시하고 제어하므로 실제 운용시 사용자의 시선 분산을 막는다. 안드로이드 스마트폰의 자세에 따라 자세 명령을 인식하는 실험결과 이동 로봇은 평균 91.53%의 인식률을 보였다.

      • KCI등재

        안드로이드 스마트폰과 이동 로봇의 자세 동기화를 위한 제어 시스템

        김민지,배설봉,신동협,주문갑 대한임베디드공학회 2014 대한임베디드공학회논문지 Vol.9 No.5

        In this paper, we propose a control system for synchronizing attitude between an Android smartphone and a mobile robot. The control system is comprised of a smartphone and a mobile robot. The smartphone transports its attitude to the mobile robot and receives the attitude of mobile robot through bluetooth communication. Further, the smartphone displays the mobile robot on the screen by using embedded camera, which can be used as a pseudo augmented reality. Comparing the received attitude data from smartphone, the mobile robot measures its attitude by an AHRS(attitude heading reference system) and controls its attitude. Experiments show that the synchronization performance of the proposed system is maintained in the error range of 1'.

      • KCI등재

        PID 제어기를 이용한 호버링 AUV의 경유점 추적

        김민지,배설봉,백운경,주문갑,하경남,Kim, Min J.,Bae, Seol B.,Baek, Woon-Kyung,Joo, Moon G.,Ha, Kyoung Nam 대한임베디드공학회 2015 대한임베디드공학회논문지 Vol.10 No.4

        For the tracking of the way-points of hovering AUV (HAUV), we suggest a simple PID controller. The way-points are designed to approach to a virtual underwater structure and the heading angles at each way-point are set to look at the structure in the face. The proposed controller consists of a vertical controller to maintain the depth and pitch angle, and a horizontal controller to move to the desired position as well as to adjust the heading angle of the HAUV. In the simulation using Matlab/Simulink, the HAUV with the proposed PID controller is shown to track all the way-points within 1 m range while maintaining proper heading angle at each way-point.

      • KCI등재

        회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현

        신동협,배설봉,주문갑,백운경 대한임베디드공학회 2014 대한임베디드공학회논문지 Vol.9 No.3

        In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

      • KCI등재

        이동 로봇 제어를 위한 안드로이드 스마트폰 어플리케이션 개발

        김민지(Min J. Kim),배설봉(Seol B. Bae),주문갑(Moon G. Joo),이원창(Won Chang Lee) 한국정보기술학회 2014 한국정보기술학회논문지 Vol.12 No.5

        In this paper, we propose an Android smartphone application to control the posture of mobile robots. The Android smartphone application transmits various commands of posture to a mobile robot by Bluetooth communication. The posture commands are perceived from user motion by collecting data values from acceleration sensor and orientation sensor in the Android smartphone. Pseudo-augmented reality is aimed, where the user is controlling and observing the mobile robots through a camera screen displaying the robot information together, to prevent dispersion of the users sight. Experiment using a mobile car and a mobile ship shows 91.53% recognition rate of the posture command by the posture of Android smartphone.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼