RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        J2와 J3 불변량에 기초한 비대칭 항복함수의 제안(II)

        김영석,눙엔푸반,안정배,김진재 한국소성∙가공학회 2022 소성가공 : 한국소성가공학회지 Vol.31 No.6

        The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a modified version of previous anisotropic yield function (Trans. Mater. Process., 31(4) 2022, pp. 214-228) based on J2 and J3 stress invariants. The proposed anisotropic yield model has the 6th-order of stress components. The modified version of the anisotropic yield function in this study is as follows. The proposed anisotropic yield function well explains the anisotropic plastic behavior of various sheets such as aluminum , high strength steel , magnesium alloy sheets etc. by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to AA6016-T4 aluminum and DP980 sheets shows symmetrical yielding behavior and to AZ31B magnesium shows asymmetric yielding behavior, it was shown that the yield locus and yielding behavior of various types of sheet materials can be predicted reasonably by using the proposed anisotropic yield function.

      • KCI등재

        J2와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용

        김영석,눙엔푸반,김진재 한국소성∙가공학회 2022 소성가공 : 한국소성가공학회지 Vol.31 No.4

        The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J_2 and the third stress invariant J_3. The anisotropic yield function newly proposed in this study is as follows. 〖F(J〗_2)+ αG(J_3 )+βH (J_2×J_3 )= The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼