RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        니코틴이 배양인체 치은섬유모세포 및 치주인대세포의 활성에 미치는 효과

        공영환,유형근,신형식,Kong, Young-Hwan,Yoo, Hyung-Keun,Shin, Hyung-Shik 대한치주과학회 1995 Journal of Periodontal & Implant Science Vol.25 No.2

        The ability of fibroblasts attach to teeth is of paramount imporance in re-establishing the lost connective tissue attachment after periodontal therapy. Tobacco contains a complex mixture of substances including nicotine. various nitrousamines, trace elements. and a variety of poorly characterized substances. The effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblasts and periodontal ligament cells attachment to tissue culture surfaces and cellular activity of human gingival fibroblasts and periodontal ligament cells. Pooled human gingival fibroblasts made from extraction of 3rd molar were utilized between passage 4 and 5 and plated in 96 well plate at 20,000 cells per well. Cell number were determined using 3-(4,5-dimethylthiazole-2-y)2,5-diphenyltetrazolium bromide(MTI) , which is reflection of mitochondrial dehydrogenase activity. The concentration of nicotine used were 0.025, 0.05, 0.1, 0.2 and $0.4{\mu}M$, the average serum concentration for a smoker being approximately $0.1{\mu}M$. The results were as follows : 1. Attachment effects of nicotine on human gingival fibroblasts and periodontal ligament cells Excepts of $0.4{\mu}M$, the effects on attachment with increasing numbers of cells attaching with increasing nicotine concentrations, compared to control group. But over the 60min, return to control value. 2. The effect of cellular activity on human gingival fibroblasts and periodontal ligament cells. The cellular activity of human gingival fibroblasts and periodontal ligament cells were similar or decrease to control value at 1st incubation day. At 2nd incubation day, 0.05, 0.1, 0.2, $0.4{\mu}M$ concentrations were statistically different from control value on gingival fibroblasts group. But at 3rd incubation day, cellular activities of all experimental group were significantly decrease than control group.

      • 니코틴이 배양인체 치은섬유모세포 및 치주인대세포의 활성에 미치는 효과

        공영환,유형근,신형식 원광대학교 치의학연구소 1995 圓光齒醫學 Vol.5 No.2

        The ability of fibroblasts attach to teeth is of paramount importance in re-establishing the lost connective tissue attachment after periodontal therapy. Tobacco contains a complex mixture of substances including nicotine, various nitrosamines, trace elements, and a variety of poorly characterized substances. The effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblasts and periodontal ligament cells attachment to tissue culture surfaces and cellular activity of human gingival fibroblasts and periodontal ligament cells. Pooled human gingival fibroblasts made from extraction of 3rd molar were utilized between passage 4 and 5 and plated in 96 well plate at 20,000 cells per well. Cell number were determined using 3-(4,5-dimethylthiazole-2-y)-2,5diphenyltetrazolium bromide(MTT), which is reflection of mitochondrial dehydrogenase activity. The concentration of nicotine used were 0.025, 0.05, 0.1, 0.2 and 0.4μM, the average serum concentration for a smoker being approximately 0.1μM. The results were as follows 1. Attachment effects of nicotine on human gingival fibroblasts and periodontal ligament cells Excepts of 0.4μM, the effects on attachment with increasing numbers of cells attaching with increasing nicotine concentrations, compared to control group. But over the 60 min, return to control value. 2. The effect of cellular activity on human gingival fibroblasts and periodontal ligament cells The cellular activity of human gingival fibroblasts and periodontal ligament cells were similar or decrease to control value at 1st incubation day. At 2nd incubation day, 0.05, 0.1, 0.2, 0.4μM concentrations were statistically different from control value on gingival fibroblasts group. But at 3rd incubation day, cellular activities of all experimental group were significantly decrease than control group.

      • SCIESCOPUSKCI등재

        니코틴과 PDGF-AB가 배양인체 치은섬유모세포 및 치주인대세포의 활성에 미치는 영향

        김덕규,공영환,유형근,신형식,Kim, Deok-Kyu,Kong, Young-Hwan,You, Hyung-Keun,Shin, Hyung-Shik 대한치주과학회 1996 Journal of Periodontal & Implant Science Vol.26 No.1

        The ability of fibroblasts attached to teeth is paramount important in reestablishing the lost connective tissue attachment after periodontal therapy. The migration and proliferation of periodontal ligament cells are desired goal of periodontal regeneration therapy. PDGF is well known to regulate the cell activity of mesenchymal origin cell. Tobacco contains a complex mixture of substance including nicotine, various nitrosamines, trace elements, and variety of poorly characterized substances. Human gingival fibroblasts and periodontal ligament cells were cultured from extracted tooth for non-periodontal reason. Cultured human gingival fibroblasts and periodontal ligament cells in vitro were treated with PDGF, nicotine in time dependent manner. Cellular activities were determined by MTT assay. The purpose of this study was to determine the effects of Nicotine and PDGF, respectively and the effect of PDGF presence of nicotine on human gingival fibroblasts and periodontal ligament cells. The results were as follows : 1. In the cell activities of human gingival fibroblasts and periodontal ligament cells were similar or decreased to control value at 1st day. At 2nd day, cellular activities of both group were increased to control value. At 3rd day, cellular activities of both group were returned to the control value. 2. In the cell activities of PDGF on human gingival fibroblasts and periodontal ligament cells, cell activities significantly increase from control group on periodontal ligament cells compared to gingival fibroblast group at 3rd day. 3. In the cell activities of PDGF and nicotine combined application on human gingival fibroblasts and periodontal ligament cells, it seems likely that the nicotinic effect of gingival fibroblasts were higher than periodontal ligament cells and the PDGF effect of periodontal ligament cells were higher than gingival fibroblasts. This results suggested that PDGF might stimulate the selective growth on periodontal ligament cells.

      • SCIESCOPUSKCI등재

        황련이 Lipopolysaccharide를 처리한 치주인대세포의 세포활성 및 IL-6 생산에 미치는 영향

        송기범,공영환,유형근,신형식,Song, Ki-Bum,Kong, Young-Hwan,You, Hyung-Keun,Shin, Hyung-Shik 대한치주과학회 1996 Journal of Periodontal & Implant Science Vol.26 No.3

        In infectious disease, invasion of host tissue by bacteria or their products frequently induces a wide variety of inflammatory and immunopathologic reaction. Evidence indicates that cytokines are involved in the initiation and progression of chronic inflammatory diseases, such as periodontitis. Interleukin-6, which is a multifunctional cytokine, has important roles in acute and chronic inflammation and may also be implicated in bone resorption. Periodontal diseases are characterized by chronic inflammation of the periodontium with alveolar bone resoption. A principal driving force behind this response appears to lie in the immune system's response to bacteria. Many of the cell components which have been shown to function as virulence factors in gram-negative bacteria are associated with the bacterial surface. Of these, lipopolysaccharide has been characterized as one that mediates a number of biological activities which can lead to the destruction of host tissue. Non-steroidal antiinflammatory drug is used for reduce inflammation, and most of NSAIDs inhibit prostaglandine $E_2$ production, but it is shown that $PGE_2$ production is stimulated by IL-1 in recent study. So, the influence of other cytokines except $PGE_2$ on periodontium can not be avoided. Therefore, new antiinflammatory drug is needed. Rhizoma coptidis is used in oriental medicine for anti-inflammation and antiseptics. In this present study, we examined the IL-6 release in periodontal ligament cells treated with the lipopolysaccharide, and also the effect of rhizoma coptidis on cellular activity and IL-6 production of periodontal ligament cells. To evaluate the effect of rhizoma coptidis on cellular activity, the cells were seeded at a cell density of $1{\times}10^4$ cells/well in 24-well culture plates. After one day incubation, 1-6, 10-9 and 10-12 g/ml of rhizoma coptidis and 5, $10{\mu}g/ml$ of LPS were added to the each well and incubated for 1 and 2 days, respectively. Then, MTT assay were carried out. To evaluate the effect of rhizoma coptidis on IL-6 production, the cells were seeded at a cell density of $1.5{\times}10^4$ cells/well in 24-well culture plates. After one day incubation, 10-9 g/ml of rhizoma coptidis and 5, $10{\mu}g/ml$ of LPS were added to the each well and incubated for 3, 6, 12 and 24 hours. Then, amounts of IL-6 production is measured by IL-6 ELISA kit used. The results were as follows : 1. Rhizoma coptidisrbelow to ($10^{-6}g/ml$) significantly increaed cellular activity of periodontal ligament cells than control. 2. Rhizoma coptidist ($10^{-9}g/ml$) significantly increased cellular activity of LPS($5{\mu}g/ml$)-treated periodontal ligament cells than control. 3. LPS(5 and $10{\mu}g/ml$) significantly increased IL-6 production of periodontal ligament cells than control. 4. Rhizoma coptidis($10^{-9}g/ml$) decreased IL-6 production of LPS ($5{\mu}g/ml$)-treated periodontal.ligarnent cells than LPS only tested group. These findings suggest that stimulation of the IL-6 release of periodontal ligament cells by LPS may have a role in the progression of inflammation and alveolar bone resoption in periodontal disease, and that inhibition of the IL-6 release of cells and stimulation of cellular activity by rhizoma coptidis may help the periodontal regeneration.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼