RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis

        Chuanxi Sun,Tianyi Zhu,Yuwei Zhu,Bing Li,Jiaming Zhang,Yixin Liu,Changning Juan,Shifa Yang,Zengcheng Zhao,Renzhong Wan,Shuqian Lin,Bin Yin 대한수의학회 2022 Journal of Veterinary Science Vol.23 No.4

        Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10 mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were “protein processing in endoplasmic reticulum,” “retinol metabolism,” and “glycine, serine, and threonine metabolism.” Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.

      • KCI등재

        Enterococcus faecium R0026 Combined with Bacillus subtilis R0179 Prevent Obesity-Associated Hyperlipidemia and Modulate Gut Microbiota in C57BL/6 Mice

        ( Jinli Huang ),( Juan Huang ),( Tianyi Yin ),( Huiyun Lv ),( Pengyu Zhang ),( Huajun Li ) 한국미생물생명공학회(구 한국산업미생물학회) 2021 Journal of microbiology and biotechnology Vol.31 No.2

        Bacillus subtilis and Enterococcus faecium are commonly used probiotics. This study aimed to identify the effect of live combined Bacillus subtilis R0179 and Enterococcus faecium R0026 (LCBE) on obesityassociated hyperlipidemia and gut microbiota in C57BL/6 mice. Forty male C57BL/6 mice were divided into four groups: normal group (N group), model group (M group), low-dose group (L group), and high-dose group (H group). Mice were gavaged with LCBE at 0.023 g/mice/day (L group) or 0.23 g/mice/day (H group) and fed with a high-fat diet for 8 weeks. In vitro E. faecium R0026 showed an ability to lower the low-concentration of cholesterol by 46%, and the ability to lower the highconcentration of cholesterol by 58%. LCBE significantly reduced the body weight gain, Lee index, brown fat index and body mass index of mice on a high-fat diet. Moreover, LCBE markedly improved serum lipids (including serum triglyceride, total cholesterol, low-density lipoprotein and highdensity lipoprotein) while also significantly reducing liver total cholesterol. Serum lipopolysaccharide and total bile acid in L and H groups decreased significantly compared with M group. PCR-DGGE analysis showed that the composition of gut microbiota in the treatment groups was improved. Akkermansia muciniphila was found in H group. The PCA result indicated a similar gut microbiota structure between LCBE treatment groups and normal group while the number of bands and Shannon diversity index increased significantly in the LCBE treatment groups. Finally, qPCR showed Bifidobacterium spp. increased significantly in H group compared with M group, LCBE alleviated liver steatosis and improved brown adipose tissue index.

      • SCIESCOPUSKCI등재

        Hepatotoxic mechanism of diclofenac sodium on broiler chicken revealed by iTRAQ-based proteomics analysis

        Sun, Chuanxi,Zhu, Tianyi,Zhu, Yuwei,Li, Bing,Zhang, Jiaming,Liu, Yixin,Juan, Changning,Yang, Shifa,Zhao, Zengcheng,Wan, Renzhong,Lin, Shuqian,Yin, Bin 대한수의학회 2022 Journal of Veterinary Science Vol.23 No.3

        Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms remain ambiguous. Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic proteome of broiler chickens. Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). DFS was administered orally at 10mg/kg body weight in group A, while the chickens in group B were perfused with saline as a control. Histopathological observations, serum biochemical examinations, and quantitative real-time polymerase chain reaction were performed to assess the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using isobaric tags for relative and absolute quantification (iTRAQ) technology. Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling pathways were embodied via a protein-protein interaction network. The results showed that the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, were "protein processing in endoplasmic reticulum," "retinol metabolism," and "glycine, serine, and threonine metabolism." Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼