RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Carbon fibers/nickel nanocomposite particles reinforced ethylene vinyl acetate stretchable conductive polymer: fabrication, microstructure, electrical and mechanical properties

        Daoush Walid M.,Al-Zuair Abdullah Fahad,Saharudin Mohd Shahneel,Inam Fawad 한국탄소학회 2024 Carbon Letters Vol.34 No.5

        Carbon fibers of polyacrylonitrile (PAN) type were coated with nickel nanoparticles using a chemical reduction method in alkaline hydrazine bath. The carbon fibers were firstly heated at 400 °C and then chemically treated in hydrochloric acid followed by nitric acid to clean, remove any foreign particles and functionalized its graphitic surfaces by introducing some functional groups. The functionalized carbon fibers were coated with nickel to produce 10 wt% Cf/Ni nanocomposites. The uncoated heat treated and the nickel coated carbon fibers were investigated by SEM, EDS, FTIR and XRD to characterize the particle size, morphology, chemical composition and the crystal structure of the investigated materials. The nickel nanoparticles were successfully deposited as homogeneous layer on the surface of the functionalized carbon fibers. Also, the deposited nickel nanoparticles have quazi-spherical shape and 128–225 nm median particle size. The untreated and the heat treated as well as the 10 wt% Cf/Ni nanocomposite particles were further reinforced in ethylene vinyl acetate (EVA) polymer separately by melt blending technique to prepare 0.5 wt% Cf-EVA polymer matrix stretchable conductive composites. The microstructures of the prepared polymer composites were investigated using optical microscope. The carbon fibers as well as the nickel coated one were homogenously distributed in the polymer matrix. The obtained samples were analyzed by TGA. The addition of the nickel coated carbon fibers to the EVA was improved the thermal stability by increasing the thermal decomposition temperature Tmax1 and Tmax2. The electrical and the mechanical properties of the obtained 10 wt% Cf/Ni nanocomposites as well as the 0.5 wt% Cf-EVA stretchable conductive composites were evaluated by measuring its thermal stability by thermogravimetric analysis (TGA), electrical resistivity by four probe method and tensile properties. The electrical resistivity of the fibers was decreased by coating with nickel and the 10 wt% Cf/Ni nanocomposites has lower resistivity than the carbon fibers itself. Also, the electrical resistivity of the neat EVA is decreased from 3.2 × 1010 to 1.4 × 104 Ω cm in case of the reinforced 0.5 wt% Cf/Ni-EVA polymer composite. However, the ultimate elongation and the Young’s modulus of the neat EVA polymer was increased by reinforcing with carbon fibers and its nickel composite.

      • SCIESCOPUSKCI등재

        Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties

        Mi-Seon Park,Yoonyoung Ko,Min-Jung Jung,Young-Seak Lee 한국탄소학회 2015 Carbon Letters Vol.16 No.2

        Carbon fibers are prepared by stabilizing pitch fibers accompanying electron beam (E-beam) irradiation. The carbon fibers pretreated by E-beam irradiation achieve a higher stabilization index than the carbon fibers that are only heat-stabilized. In addition, the carbon fibers subjected to E-beam irradiation in the stabilization step exhibit a comparable tensile strength to that of general purpose carbon fibers. The carbon fibers pretreated with an absorbed dose of 3000 kGy have a tensile strength of 0.54 GPa for a similar fiber diameter. Elemental, Fourier-transform infrared spectroscopy, and thermogravimetric analyses indicate that Ebeam irradiation is an efficient oxidation and dehydrogenation treatment for pitch fibers by showing that the intensity of the aliphatic C–H stretching and aromatic CH2 bending (out-ofplane) bands significantly decrease and carbonyl and carboxylic groups form.

      • SCIESCOPUSKCI등재

        Study of a melt processable polymer precursor for carbon fiber

        Samsuddin F. Mahmood,Benjamin L. Batchelor,Minhye Jung,Kyusoon Park,Walter E. Voit,Bruce M. Novak,Duck Yang 한국탄소학회 2019 Carbon Letters Vol.29 No.6

        Carbon fibers (CF) are predominantly being manufactured from polyacrylonitrile (PAN) based precursors which require solution spinning utilizing health hazardous organic solvent. This also adds to the cost of production due to the investment for the solvent recovery. Study of melt processable precursors has long been sought as a solution for health and environmental problems associated with the use of hazardous solvent. No use of solvent for spinning will also reduce the cost of manufacturing. Our coworker Deng et al. reported the possibility of using acrylonitrile-co-1-vinylimidazole (AN/VIM) copolymer as melt processable CF precursor. Here we report a successful preparation of carbon fiber from the co-polymer. We successfully demonstrated the preparation of thinner precursor fibers and carbon fibers through our optimization study of melt spinning, annealing, stabilization and carbonization.

      • Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers

        Heo, G.Y.,Yoo, Y.J.,Park, S.J. Korean Society of Industrial and Engineering Chemi 2013 Journal of industrial and engineering chemistry Vol.19 No.3

        Carbon papers were prepared wet-laid process of pitch-coated carbonized glass fibers, and the electrical conductivity of conductive carbon paper was investigated based on the structural and morphology of pitch-coated carbonized glass fibers prepared by different carbonization temperature. The electrical conductivity of the carbon paper which made of pitch-coated carbonized glass fibers was decreased at 900<SUP>o</SUP>C and 1000<SUP>o</SUP>C of carbonization temperature of pitch-coated glass fibers. This is due to the low stacked crystalline structure of pitch-coated glass fibers which is resulting from a basal carbon loss, in situ gasification and pyrolysis of low molecular compounds of coated pitch, at high carbonization temperature.

      • KCI등재

        Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers

        Zhang Guodong,Yang Weizhuang,Ding Jianan,Liu Mengxiang,Di Chengrui,Ci Shengzong,Qiao Kun 한국탄소학회 2024 Carbon Letters Vol.34 No.3

        Copper-coated carbon fibers have excellent conductivity and mechanical properties, making them a promising new light-weight functional material. One of the main challenges to their development is the poor affinity between carbon fiber and metals. This paper selects different carbon fibers for copper electroplating experiments to study the effect of carbon fiber properties on the interface bonding performance between the copper plating layer and carbon fibers. It has been found that the interfacial bonding performance between copper and carbon fiber is related to the degree of graphitization of carbon fiber. The lower the degree of graphitization of carbon fiber, the smaller the proportion of carbon atoms with sp2 hybrid structure in carbon fiber, the stronger the interfacial bonding ability between carbon fiber and copper coating. Therefore, carbon fiber with lower graphitization degree is conducive to reducing the falling off rate of copper coating and improving the quality of copper coating, and the conductivity of copper-plated carbon fibers increases with the decrease of graphitization degree of carbon fibers. The conductivity of copper-plated carbon fibers increases by more than six times when the graphitization degree of carbon fibers decreases by 23.9%. This work provides some benchmark importance for the preparation of high-quality copper-plated carbon fibers.

      • KCI등재

        Effect of carbonization temperature on electrical conductivity of carbon papers prepared from petroleum pitch-coated glass fibers

        허건영,박수진,유윤종 한국공업화학회 2013 Journal of Industrial and Engineering Chemistry Vol.19 No.3

        Carbon papers were prepared wet-laid process of pitch-coated carbonized glass fibers, and the electrical conductivity of conductive carbon paper was investigated based on the structural and morphology of pitch-coated carbonized glass fibers prepared by different carbonization temperature. The electrical conductivity of the carbon paper which made of pitch-coated carbonized glass fibers was decreased at 900 8C and 1000 8C of carbonization temperature of pitch-coated glass fibers. This is due to the low stacked crystalline structure of pitch-coated glass fibers which is resulting from a basal carbon loss, in situ gasification and pyrolysis of low molecular compounds of coated pitch, at high carbonization temperature.

      • KCI등재

        Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

        Madhuri Sharon,Maheshwar Sharon 한국탄소학회 2012 Carbon Letters Vol.13 No.3

        Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an sp3 carbon contribution, and having pore sizes around 10μm favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

      • SCIESCOPUSKCI등재

        Effect of carbonization temperature and chemical pre-treatment on the thermal change and fiber morphology of kenaf-based carbon fibers

        Jin-Myung Kim,In-Seong Song,Dong-Hwan Cho,Ik-Pyo Hong 한국탄소학회 2011 Carbon Letters Vol.12 No.3

        Kenaf fibers, cellulose-based natural fibers, were used as precursor for preparing kenafbased carbon fibers. The effects of carbonization temperature (700℃ to 1100℃) and chemical pre-treatment (NaOH and NH4Cl) at various concentrations on the thermal change, chemical composition and fiber morphology of kenaf-based carbon fibers were investigated. Remarkable weight loss and longitudinal shrinkage were found to occur during the thermal conversion from kenaf precursor to kenaf-based carbon fiber, depending on the carbonization temperature. It was noted that the alkali pre-treatment of kenaf with NaOH played a role in reducing the weight loss and the longitudinal shrinkage and also in increasing the carbon content of kenaf-based carbon fibers. The number and size of the cells and the fiber diameter were reduced with increasing carbonization temperature. Morphological observations implied that the micrometer-sized cells were combined or fused and then re-organized with the neighboring cells during the carbonization process. By the pre-treatment of kenaf with 10 and 15 wt% NaOH solutions and the subsequent carbonization process, the inner cells completely disappeared through the transverse direction of the kenaf fiber, resulting in the fiber densification. It was noticeable that the alkali pre-treatment of the kenaf fibers prior to carbonization contributed to the forming of kenaf-based carbon fibers.

      • SCOPUSKCI등재

        탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성

        하나은 ( Naeun Ha ),임채훈 ( Chaehun Lim ),하성민 ( Seongmin Ha ),명성재 ( Seongjae Myeong ),이영석 ( Young-seak Lee ) 한국공업화학회 2023 공업화학 Vol.34 No.5

        본 연구에서는 탄소섬유강화플라스틱(CFRP)을 열분해하여 얻은 폐 탄소섬유를 이용하여 기상 불소화를 통해 불화탄소를 제조하고 리튬일차전지의 환원극 소재로 재활용하고자 하였다. 먼저 열분해로 얻은 폐 탄소섬유의 물리화학적 특성을 파악하였으며, 이 폐 탄소섬유에 기상 불소화 효과를 평가하기 위하여 불화탄소의 구조적, 화학적 특성을 분석하였다. XRD 분석에 의해 폐 탄소섬유의 육각망탄소 적층구조(002피크)는 기상 불소화의 온도가 증가함에 따라 점차 불화탄소 구조(001피크)로 전환되었음을 확인하였다. 이 불화탄소를 이용하여 제조된 리튬일차전지의 방전용량은 최대 862 mAh/g이었다. 이는 다른 탄소 재료로 제조한 불화탄소 기반 리튬이온차전지의 방전용량과 비교하였을 때 우수한 성능을 보였다. 이러한 결과는 폐 CFRP 기반 폐탄소섬유를 이용한 불화탄소는 리튬일차전지의 환원극 소재로 활용할 수 있을 것으로 여겨진다. In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CF<sub>X</sub>, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

      • SCOPUSKCI등재

        분체공학,유동층,고분자,재료(무기, 유기) : 금속(Ag, Cu, Co)함유 활성탄소섬유의 미세공도와 금속입자의 거동

        임광순 ( Im Gwang Sun ),엄상용 ( Eom Sang Yong ),유승곤 ( Yu Seung Gon ),( Dan D. Edie ) 한국화학공학회 2003 Korean Chemical Engineering Research(HWAHAK KONGHA Vol.41 No.4

        Metal (Ag, Cu, Co)salts were mixed to reformed petroleum pitches for production of metal-containing carbon fibers. The carbon fiber was steam activated to investigate the microporosity and the behaviour of metal particles in activated carbon fiber. The melt spinning temperature of precursor pitch linearly increased as the metal content increased. Cobalt and copper-containing carbon fibers were decomposed after 400℃, silver-containing and non-metal containing carbon fibers were decomposed after 480℃ in air. The average pore diameter and specific surface area of non-metal containing activated carbon fibers were 20 Å and 1,100 ㎡/g. The activation rates of metal-containing carbon fibers increased by catalytic acceleration of metals. Average pore diameter and mesopore fraction of metal-containing activated carbon fiber increased as the metal content increased, however, specific surface area decreased. The metal-containing activated carbon fibers showed peaks corresponding to their own metal. Silver particles were uniformly distributed in activated carbon fibers, while copper and cobalt particles tended to coalesence and some of coalesced copper exited from activated carbon fibers resulting in macropores on the surface of activated carbon fibers during the steam activation.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼