RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Free vibration of various types of FGP sandwich plates with variation in porosity distribution

        Aicha Kablia,Rabia Benferhat,Tahar Hassaine Daouadji,Rabahi Abderezak 국제구조공학회 2023 Structural Engineering and Mechanics, An Int'l Jou Vol.85 No.1

        The use of functionally graded materials in applications involving severe thermal gradients is quickly gaining acceptance in the composite mechanics community, the aerospace and aircraft industry. In the present study, a refined sandwich plate model is applied to study the free vibration analysis of porous functionally graded material (FGM) sandwich plates with various distribution rate of porosity. Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the sandwich plate. The number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported sandwich plates is obtained using Hamilton’s principle. In order to present the effect of the variation of the porosity distribution on the dynamic behavior of the FGM sandwich plates, new mixtures are proposed which take into account different rate of porosity distribution between the ceramic and the metal. The present method is applicable to study the dynamic behavior of FGM plates and sandwich plates. The frequencies of two kinds of FGM sandwich structures are analyzed and discussed. Several numerical results have been compared with the ones available in the literature.

      • Mechanical behavior of RC beams bonded with thin porous FGM plates: Case of fiber concretes based on local materials from the mountains of the Tiaret highlands

        Benferhat Rabia,Tahar Hassaine Daouadji,Rabahi Abderezak Techno-Press 2023 Coupled systems mechanics Vol.12 No.3

        The objective of this study is to evaluate the effects of adding fibers to concrete and the distribution rate of the porosity on the interfacial stresses of the beams strengthened with various types of functionally graded porous (FGP) plate. Toward this goal, the beams strengthened with FGP plate were considered and subjected to uniform loading. Three types of beams are considered namely RC beam, RC beam reinforced with metal fibers (RCFM) and RC beam reinforced with Alfa fibers (RCFA). From an analytical development, shear and normal interfacial stresses along the length of the FGP plates were obtained. The accuracy and validity of the proposed theoretical formula are confirmed by the others theoretical results. The results showed clearly that adding fibers to concrete and the distribution rate of the porosity have significant influence on the interfacial stresses of the beams strengthened with FGP plates. Finally, parametric studies are carried out to demonstrate the effect of the mechanical properties and thickness variations of FGP plate, concrete and adhesive on interface debonding, we can conclude that, This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures.

      • Finite element analysis for functionally graded porous nano-plates resting on elastic foundation

        Quoc-Hoa Pham,Phu-Cuong Nguyen,Van-Ke Tran,Trung Nguyen-Thoi 국제구조공학회 2021 Steel and Composite Structures, An International J Vol.41 No.2

        This paper proposes an improved triangular element based on the strain approach and the Reissner-Mindlin theory to investigate the static, free vibration, and buckling response of functionally graded porous (FGP) nano-plates resting on the Parternak’s two-parameter elastic medium foundation. The internal pores of nano-plates are described by two distribution laws, including uneven porosity distribution and logarithmic-uneven porosity distribution. Using Hamilton’s principle, equilibrium equations of FGP nano-plates lying on a two-parameter foundation are obtained. The most remarkable feature of the improved triangular element is the degrees of freedom of elements approximated by Lagrange functions for the membrane strain and by the high-degree polynomial functions for the bending strain. The numerical results of the present work are compared with the available results in the literature to evaluate the performance of the proposed approach. Effects of geometrical and material properties such as the power-law index n, the porosity coefficient ξ, the nonlocal coefficient μ, and the parameters of the elastic foundation on the static, free vibration, and buckling behavior of the FGP nano-plates are examined in detail.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼