RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Fabrication of novel compound SERS substrates composed of silver nanoparticles and porous gold nanoclusters: A study on enrichment detection of urea

        Li, Yali,Li, Qianwen,Sun, Chengbin,Jin, Sila,Park, Yeonju,Zhou, Tieli,Wang, Xu,Zhao, Bing,Ruan, Weidong,Jung, Young Mee Elsevier 2018 APPLIED SURFACE SCIENCE - Vol.427 No.2

        <P><B>Abstract</B></P> <P>A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10<SUP>−6</SUP> M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1mM and exhibited good quantitative character over the physiological concentration range (1∼20mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A new type of SERS substrate, consisting of silver nanoparticles and porous gold nanoparticles was fabricated. </LI> <LI> An additional enhancement contribution generated from the porous characteristic of gold nanoparticles. </LI> <LI> The substrates were used for the detection of a physiological metabolite of urea molecules. </LI> <LI> The results exhibited good quantitative character over all the physiological concentration range (1∼20 mM). </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • A reagent-assisted method in SERS detection of methyl salicylate

        Li, Yali,Li, Qianwen,Wang, Yanan,Oh, Joohee,Jin, Sila,Park, Yeonju,Zhou, Tieli,Zhao, Bing,Ruan, Weidong,Jung, Young Mee Elsevier 2018 Spectrochimica acta. Part A, Molecular and biomole Vol.195 No.-

        <P><B>Abstract</B></P> <P>With the explosive application of methyl salicylate (MS) molecules in food and cosmetics, the further detection of MS molecules becomes particularly important. Here we investigated the detection of MS molecules based on surface-enhanced Raman scattering (SERS) in a novel molecule/assistant/metal system constructed with MS, 4,4′-(hexafluoroisopropylidene) bis (benzoic acid) and Ag nanoparticles (AgNPs). The minimum detection concentration is 10<SUP>−4</SUP> M. To explore the function of assisted reagent, we also referred another system without assistant molecules. The result demonstrates that SERS signals were not acquired, which proves that the assistant molecules are critical for the capture of MS molecules. Two possible mechanisms of MS/assistant/AgNPs system were speculated through two patterns of hydrogen bonds. The linker molecules acted as the role of the bridge between metallic substrates and target molecules through the molecular recognition. This strategy is very beneficial to the expanding of MS detection techniques and other hydrogen bond based coupling detections with SERS.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A novel molecule/assistant/metal system was constructed to achieve the SERS detection of methyl salicylate. </LI> <LI> The intermolecular hydrogen bond was employed as the driving force to accomplish the assembly. </LI> <LI> The obstacle of non-adsorption of target molecules on substrates was solved through the hydrogen-bond-based assembly method. </LI> </UL> </P> <P><B>Graphical Abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • SCIESCOPUSKCI등재

        Qualitative and quantitative analysis of furosine in fresh and processed ginsengs

        Li, Yali,Liu, Xiaoxu,Meng, Lulu,Wang, Yingping The Korean Society of Ginseng 2018 Journal of Ginseng Research Vol.42 No.1

        Background: Furosine (${\varepsilon}$-N-2-furoylmethyl-L-lysine, FML) is an amino acid derivative, which is considered to be an important indicator of the extent of damage (deteriorating the quality of amino acid and proteins due to a blockage of lysine and a decrease in the digestibility of proteins) during the early stages of the Maillard reaction. In addition, FML has been proven to be harmful because it is closely related to a variety of diseases such as diabetes. The qualitative analysis of FML in fresh and processed ginsengs was confirmed using HPLC-MS. Methods: An ion-pair reversed-phase LC method was used for the quantitative analysis of FML in various ginseng samples. Results: The contents of FML in the ginseng samples were 3.35-42.28 g/kg protein. The lowest value was observed in the freshly collected ginseng samples, and the highest value was found in the black ginseng concentrate. Heat treatment and honey addition significantly increased the FML content from 3.35 g/kg protein to 42.28 g/kg protein. Conclusion: These results indicate that FML is a promising indicator to estimate the heat treatment degree and honey addition level during the manufacture of ginseng products. The FML content is also an important parameter to identity the quality of ginseng products. In addition, the generation and regulation of potentially harmful Maillard reaction products-FML in ginseng processing was also investigated, providing a solid theoretical foundation and valuable reference for safe ginseng processing.

      • SSCISCIESCOPUSKCI등재
      • KCI등재

        Seasonal Influence on Phenolic-mediated Antihyperglycemic Properties of Canadian Sugar and Red Maple Leaves Using in vitro Assay Models

        Emmanouil Apostolidis,liyali,bouhee kang,chong m. lee,navindrapseeram 한국식품과학회 2012 Food Science and Biotechnology Vol.21 No.3

        Red and sugar maple leaves collected in the summer and fall from Canada, were evaluated for phenolic content, antioxidant, α-glucosidase, and α-amylase inhibitory activities variation. The phenolic contents of summer red maple leaves (RML-S) and summer sugar maple leaves (SML-S) were higher than red and sugar maple leaves collected in fall (RML-F and SML-F, respectively). HPLC analyses showed differences in phenolic compounds present in the SML samples compared to the RML samples. The extracts were assayed for yeast and rat α-glucosidase inhibitory activities. Both results showed that SML-S extracts had the highest inhibitory activity which could possibly be attributed to the unique phenolics present therein. Milder effects were observed in terms of α-amylase inhibitory activity, with RML-F having the highest inhibitory activity. These results suggest that maple tree leaf extracts may have potential for phenolic-mediated α-glucosidase inhibition, relevant to type 2 diabetes management, with SML-S extract having the highest bioactivity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼