RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Anti-proliferation Effects of Interferon-gamma on Gastric Cancer Cells

        Zhao, Ying-Hui,Wang, Tao,Yu, Guang-Fu,Zhuang, Dong-Ming,Zhang, Zhong,Zhang, Hong-Xin,Zhao, Da-Peng,Yu, Ai-Lian Asian Pacific Journal of Cancer Prevention 2013 Asian Pacific journal of cancer prevention Vol.14 No.9

        IFN-${\gamma}$ plays an indirect anti-cancer role through the immune system but may have direct negative effects on cancer cells. It regulates the viability of gastric cancer cells, so we examined whether it affects their proliferation and how that might be brought about. We exposed AGS, HGC-27 and GES-1 gastric cancer cell lines to IFN-${\gamma}$ and found significantly reduced colony formation ability. Flow cytometry revealed no effect of IFN-${\gamma}$ on apoptosis of cell lines and no effect on cell aging as assessed by ${\beta}$-gal staining. Microarray assay revealed that IFN-${\gamma}$ changed the mRNA expression of genes related to the cell cycle and cell proliferation and migration, as well as chemokines and chemokine receptors, and immunity-related genes. Finally, flow cytometry revealed that IFN-${\gamma}$ arrested the cells in the G1/S phase. IFN-${\gamma}$ may slow proliferation of some gastric cancer cells by affecting the cell cycle to play a negative role in the development of gastric cancer.

      • KCI등재

        Microstructures and nano mechanical properties of the metal tungsten film

        Zhu Li-na,Li Guo-lu,Wang Hai-dou,Xu Bin-shi,Zhuang Da-ming,Liu Jia-jun 한국물리학회 2009 Current Applied Physics Vol.9 No.3

        The W film was prepared on 1045 steel by magnetron sputtering, with the thickness of 2 ㎛, its surface and cross-section morphologies were investigated with SEM, and the phase structure was analyzed with XRD. X-ray stress determinator was utilized to measure its residual stress, and the nano-hardness and elastic modulus of the film were surveyed by nano-indentation tester. The results show that the surface of W film is very compact and smooth; the particles arranged regularly, the granularity of the thin film is about 1 ㎛. The microcracks, cavities and desquamation were not found in the film and interface, and the bonding between the W film and substrate is well. The XRD results showed that the W film had a body-centered cubic structure, the lattice constant: ɑ = 0.316 nm, the growth preferred orientations are (110) and (220). The compressive stress (-169 MPa) was found on the surface. The average nano-hardness and elastic modulus of W film are 15.22 GPa, 176.64 GPa, respectively, and the mechanical properties of W film are well. The W film was prepared on 1045 steel by magnetron sputtering, with the thickness of 2 ㎛, its surface and cross-section morphologies were investigated with SEM, and the phase structure was analyzed with XRD. X-ray stress determinator was utilized to measure its residual stress, and the nano-hardness and elastic modulus of the film were surveyed by nano-indentation tester. The results show that the surface of W film is very compact and smooth; the particles arranged regularly, the granularity of the thin film is about 1 ㎛. The microcracks, cavities and desquamation were not found in the film and interface, and the bonding between the W film and substrate is well. The XRD results showed that the W film had a body-centered cubic structure, the lattice constant: ɑ = 0.316 nm, the growth preferred orientations are (110) and (220). The compressive stress (-169 MPa) was found on the surface. The average nano-hardness and elastic modulus of W film are 15.22 GPa, 176.64 GPa, respectively, and the mechanical properties of W film are well.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼