RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair

        Li Zhixiang,Zhou Tao,Bao Zhengqi,Wu Min,Mao Yingji 한국조직공학과 재생의학회 2024 조직공학과 재생의학 Vol.21 No.6

        BACKGROUND: In the intricate pathological milieu post-spinal cord injury (SCI), neural stem cells (NSCs) frequently differentiate into astrocytes rather than neurons, significantly limiting nerve repair. Hence, the utilization of biocompatible hydrogel scaffolds in conjunction with exogenous factors to foster the differentiation of NSCs into neurons has the potential for SCI repair. METHODS: In this study, we engineered a 3D-printed porous SilMA hydrogel scaffold (SM) supplemented with pH-/temperature-responsive paclitaxel nanoparticles (PTX-NPs). We analyzed the biocompatibility of a specific concentration of PTX-NPs and its effect on NSC differentiation. We also established an SCI model to explore the ability of composite scaffolds for in vivo nerve repair. RESULTS: The physical adsorption of an optimal PTX-NPs dosage can simultaneously achieve pH/temperature-responsive release and commendable biocompatibility, primarily reflected in cell viability, morphology, and proliferation. An appropriate PTX-NPs concentration can steer NSC differentiation towards neurons over astrocytes, a phenomenon that is also efficacious in simulated injury settings. Immunoblotting analysis confirmed that PTX-NPs-induced NSC differentiation occurred via the MAPK/ERK signaling cascade. The repair of hemisected SCI in rats demonstrated that the composite scaffold augmented neuronal regeneration at the injury site, curtailed astrocyte and fibrotic scar production, and enhanced motor function recovery in rat hind limbs. CONCLUSION: The scaffold’s porous architecture serves as a cellular and drug carrier, providing a favorable microenvironment for nerve regeneration. These findings corroborate that this strategy amplifies neuronal expression within the injury milieu, significantly aiding in SCI repair. BACKGROUND: In the intricate pathological milieu post-spinal cord injury (SCI), neural stem cells (NSCs) frequently differentiate into astrocytes rather than neurons, significantly limiting nerve repair. Hence, the utilization of biocompatible hydrogel scaffolds in conjunction with exogenous factors to foster the differentiation of NSCs into neurons has the potential for SCI repair. METHODS: In this study, we engineered a 3D-printed porous SilMA hydrogel scaffold (SM) supplemented with pH-/temperature-responsive paclitaxel nanoparticles (PTX-NPs). We analyzed the biocompatibility of a specific concentration of PTX-NPs and its effect on NSC differentiation. We also established an SCI model to explore the ability of composite scaffolds for in vivo nerve repair. RESULTS: The physical adsorption of an optimal PTX-NPs dosage can simultaneously achieve pH/temperature-responsive release and commendable biocompatibility, primarily reflected in cell viability, morphology, and proliferation. An appropriate PTX-NPs concentration can steer NSC differentiation towards neurons over astrocytes, a phenomenon that is also efficacious in simulated injury settings. Immunoblotting analysis confirmed that PTX-NPs-induced NSC differentiation occurred via the MAPK/ERK signaling cascade. The repair of hemisected SCI in rats demonstrated that the composite scaffold augmented neuronal regeneration at the injury site, curtailed astrocyte and fibrotic scar production, and enhanced motor function recovery in rat hind limbs. CONCLUSION: The scaffold’s porous architecture serves as a cellular and drug carrier, providing a favorable microenvironment for nerve regeneration. These findings corroborate that this strategy amplifies neuronal expression within the injury milieu, significantly aiding in SCI repair.

      • KCI등재

        Identification of Medium-Length Antineurofilament Autoantibodies in Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis

        Shisi Wang,Cancan Xu,Xiaobo Sun,Yifan Zhou,Yaqing Shu,Shangzhou Xia,Zhengqi Lu,Wei Qiu,Xiaofen Zhong,Lisheng Peng 대한신경과학회 2020 Journal of Clinical Neurology Vol.16 No.3

        Background and Purpose Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe central nervous system disorder mediated by NMDAR antibodies that damages neurons. We investigated the correlation between cytoskeletal autoantibodies and the clinical severity in patients with anti-NMDAR encephalitis. Methods Non-NMDAR autoantibodies were identified by screening matched cerebrospinal fluid (CSF) and the serum samples of 45 consecutive patients with anti-NMDAR encephalitis and 60 healthy individuals against N-methyl-D-aspartate receptor 1-transfected and nontransfected human embryonic kidney 293T cells. Immunocytochemistry was performed to assess antibody binding in rat brain sections and primary cortical neurons. Cell-based assays and Western blotting were applied to identify autoantibodies targeting medium neurofilaments (NFMs). We compared clinical characteristics between patients with NMDAR encephalitis who were positive and negative for anti-NFM-autoantibodies. Results Anti-NFM autoantibodies were detected in both the serum and CSF in one patient (2%) and in the serum only in six patients (13%). No antibodies were detected in the serum of healthy controls (7/45 vs. 0/60, p=0.0016). Four of the seven patients with anti-NFM autoantibodies in serum were children (57%), and three (43%) had abnormalities in brain magnetic resonance imaging. These patients responded well to immunotherapy, and either no significant or only mild disability was observed at the last follow-up. Anti-NMDAR encephalitis did not differ with the presence of anti-NFM autoantibodies. Conclusions Anti-NFM autoantibodies may be present in patients with anti-NMDAR encephalitis, indicating underlying neuronal damage. A large cohort study is warranted to investigate the clinical differences between patients with NMDAR encephalitis according to their anti- NFM antibody status.

      • KCI등재

        Effects of solvent extraction on the microstructure of bituminous coal-based graphite

        Wang Lipeng,Yao Zongxu,Guo Zhimin,Shen Xiaofeng,Li Zhiang,Zhou Zhengqi,Wang Yuling,Yang Jian-Guo 한국탄소학회 2022 Carbon Letters Vol.32 No.3

        Coal-based graphite has become the main material of emerging industries. The microstructure of coal-based graphite plays an important role in its applications in many fields. In this paper, the effect of carbon disulfide/N-methyl-2-pyrrolidone solvent mixture extraction on the microstructure of bituminous coal-based graphite was systematically studied through preliminary extraction coupled with high-temperature graphitization. The graphitization degree g (75.65%) of the coal residue-based graphite was significantly higher than that of the raw coal-based graphite. The crystallite size La of the coal residue-based graphite was reduced by 47.06% compared with the raw coal-based graphite. The ID/ IG value of the coal residue-based graphite is smaller than that of the raw coal-based graphite. The specific surface area (16.72 m2/g) and total pore volume (0.0567 m3/g) of the coal residue-based graphite are increased in varying degrees compared with the raw coal-based graphite. This study found a carbon source that can be used to prepare coal-based graphite with high graphitization degree. The results are expected to provide a theoretical basis for further clean and efficient utilization of the coal residue resources.

      • SCIESCOPUSKCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼