RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mycobacterium tuberculosis PE_PGRS45 (Rv2615c) Promotes Recombinant Mycobacteria Intracellular Survival via Regulation of Innate Immunity, and Inhibition of Cell Apoptosis

        Xu Tao,Wang Chutong,Li Minying,Wei Jing,He Zixuan,Qian Zhongqing,Wang Xiaojing,Wang Hongtao 한국미생물학회 2024 The journal of microbiology Vol.62 No.1

        Tuberculosis (TB), a bacterial infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), is a significant global public health problem. Mycobacterium tuberculosis expresses a unique family of PE_PGRS proteins that have been implicated in pathogenesis. Despite numerous studies, the functions of most PE_PGRS proteins in the pathogenesis of mycobacterium infections remain unclear. PE_PGRS45 (Rv2615c) is only found in pathogenic mycobacteria. In this study, we successfully constructed a recombinant Mycobacterium smegmatis (M. smegmatis) strain which heterologously expresses the PE_PGRS45 protein. We found that overexpression of this cell wall-associated protein enhanced bacterial viability under stress in vitro and cell survival in macrophages. MS_PE_PGRS45 decreased the secretion of pro-inflammatory cytokines such as IL-1β, IL-6, IL-12p40, and TNF-α. We also found that MS_PE_PGRS45 increased the expression of the anti-inflammatory cytokine IL-10 and altered macrophage-mediated immune responses. Furthermore, PE_PGRS45 enhanced the survival rate of M. smegmatis in macrophages by inhibiting cell apoptosis. Collectively, our findings show that PE_PGRS45 is a virulent factor actively involved in the interaction with the host macrophage.

      • KCI등재

        Echinacoside Ameliorates Cyclophosphamide-Induced Bladder Damage in Mice

        Yunpeng Shao,Yu Liu,Baixin Shen,Qiao Zhou,Zhongqing Wei 한국식품영양과학회 2022 Journal of medicinal food Vol.25 No.7

        Interstitial cystitis (IC) is featured by apoptosis and chronic inflammation in bladder tissue. We aimed to evaluate the effect of echinacoside (ECH), which is known to modulate inflammation and apoptosis on IC using relevant models. We established a mouse model of cystitis using cyclophosphamide (CYP) and treated human urothelium cells (SV-HUC-1) with lipopolysaccharide (LPS) + ATP as in vitro model. The bladder function was tested by urodynamics. Apoptosis of bladder cells was assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Expressions of apoptosis-associated and inflammation-related proteins were assessed using western blotting. Treatment with ECH significantly improved bladder function, reduced inflammatory damage, and decreased apoptosis in the models. Furthermore, ECH decreased the phosphorylation levels of IκB and NF-κB(p65), and upregulated the expression of peroxisome proliferator-activated receptor gamma (PPARγ), which are related to apoptosis and inflammation in CYP-induced mouse cystitis. Moreover, ECH did not reduce apoptosis of urothelial cells after treatment with PPARγ antagonist GW9662. Our findings suggest that ECH might have protective effect against IC in bladder and be mediated through modulation of the PPARγ/NF-κB pathway.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼