RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Influence of Coastal Wind on Surface Ozone and Nitrogen Oxides in Suburban Shanghai

        Wenpo Shan,Peng Yang,Haixia Lu,Kefeng Ma,Zhixin Huang 한국기상학회 2016 Asia-Pacific Journal of Atmospheric Sciences Vol.52 No.5

        Surface ozone, NO, NO2, and NOx were measured at a coastal site (Shihua) and a nearby inland site (Zhujing) in suburban Shanghai for the whole year of 2009. More days with ozone pollution in a longer time range were observed at the coastal site than the inland site. The diurnal variations of NOx concentrations were obviously higher at Zhujing station, while those of ozone concentrations were higher at Shihua station, indicating their different air pollution conditions. Coastal wind has significant influence on the levels and characteristics of the air pollutants. The ozone concentrations during maritime winds (MW) were much higher than those during continental winds (CW) at each of the site, while the NO and NO2 concentrations were both opposite. The ozone concentrations at Shihua station were much higher than those at Zhujing station, while the NO and NO2 concentrations were both opposite. The ozone concentrations at both of the two sites showed a distinct “weekend effects” and “weekdays effects” patterns during CW and MW, respectively. Correlation analysis of the pollutants showed that, the compounds during MW were more age than those during CW, and the compounds at Shihua were more age than those at Zhujing. The air pollutions at both of the two sites are mainly associated with the pollutants emitted in this region instead of long range transport.

      • KCI등재

        Involvement of Orai1 in tunicamycin-induced endothelial dysfunction

        Hui Yang,Yumei Xue,Sujuan Kuang,Mengzhen Zhang,Jinghui Chen,Lin Liu,Zhixin Shan,Qiuxiong Lin,Xiaohong Li,Min Yang,Hui Zhou,Fang Rao,Chunyu Deng 대한약리학회 2019 The Korean Journal of Physiology & Pharmacology Vol.23 No.2

        Endoplasmic reticulum (ER) stress is mediated by disturbance of Ca2+ homeostasis. The store-operated calcium (SOC) channel is the primary Ca2+ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on Ca2+ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular Ca2+ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.

      • SCIESCOPUSKCI등재

        Involvement of Orai1 in tunicamycin-induced endothelial dysfunction

        Yang, Hui,Xue, Yumei,Kuang, Sujuan,Zhang, Mengzhen,Chen, Jinghui,Liu, Lin,Shan, Zhixin,Lin, Qiuxiong,Li, Xiaohong,Yang, Min,Zhou, Hui,Rao, Fang,Deng, Chunyu The Korean Society of Pharmacology 2019 The Korean Journal of Physiology & Pharmacology Vol.23 No.2

        Endoplasmic reticulum (ER) stress is mediated by disturbance of $Ca^{2+}$ homeostasis. The store-operated calcium (SOC) channel is the primary $Ca^{2+}$ channel in non-excitable cells, but its participation in agent-induced ER stress is not clear. In this study, the effects of tunicamycin on $Ca^{2+}$ influx in human umbilical vein endothelial cells (HUVECs) were observed with the fluorescent probe Fluo-4 AM. The effect of tunicamycin on the expression of the unfolded protein response (UPR)-related proteins BiP and CHOP was assayed by western blotting with or without inhibition of Orai1. Tunicamycin induced endothelial dysfunction by activating ER stress. Orai1 expression and the influx of extracellular $Ca^{2+}$ in HUVECs were both upregulated during ER stress. The SOC channel inhibitor SKF96365 reversed tunicamycin-induced endothelial cell dysfunction by inhibiting ER stress. Regulation of tunicamycin-induced ER stress by Orai1 indicates that modification of Orai1 activity may have therapeutic value for conditions with ER stress-induced endothelial dysfunction.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼