RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIEKCI등재

        Characteristics of the Infection of Tilletia laevis Kühn (syn. Tilletia foetida (Wallr.) Liro.) in Compatible Wheat

        Zhaoyu Ren,Wei Zhang,Mengke Wang,Haifeng Gao,Huimin Shen,Chunping Wang,Taiguo Liu,Wanquan Chen,Li Gao 한국식물병리학회 2021 Plant Pathology Journal Vol.37 No.5

        Tilletia laevis Kühn (syn. Tilletia foetida (Wallr.) Liro.) causes wheat common bunt, which is one of the most devastating plant diseases in the world. Common bunt can result in a reduction of 80% or even a total loss of wheat production. In this study, the characteristics of T. laevis infection in compatible wheat plants were defined based on the combination of scanning electron mi- croscopy, transmission electron microscopy and laser scanning confocal microscopy. We found T. laevis could lead to the abnormal growth of wheat tissues and cells, such as leakage of chloroplasts, deformities, disordered arrangements of mesophyll cells and also thickening of the cell wall of mesophyll cells in leaf tissue. What’s more, T. laevis teliospores were found in the roots, stems, flag leaves, and glumes of infected wheat plants instead of just in the ovaries, as previously reported. The abnormal characteristics caused by T. laevis may be used for early detection of this pathogen instead of molecular markers in addition to providing theoretical insights into T. laevis and wheat interactions for breed- ing of common bunt resistance.

      • KCI등재

        Enhanced luminescence of Tb3+ by efficient energy transfer from Ce3+ in Sr2B5O9Cl host

        Jiming Zheng,Chongfeng Guo,Xu Ding,Zhaoyu Ren,Jintao Bai 한국물리학회 2012 Current Applied Physics Vol.12 No.3

        Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4/7FJ (J ¼ 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipoleedipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼