RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An MRTF-A–ZEB1–IRF9 axis contributes to fibroblast–myofibroblast transition and renal fibrosis

        Zhao Qianwen,Shao Tinghui,Zhu Yuwen,Zong Gengjie,Zhang Junjie,Tang Shifan,Lin Yanshan,Ma Hongzhen,Jiang Zhifan,Xu Yong,Wu Xiaoyan,Zhang Tao 생화학분자생물학회 2023 Experimental and molecular medicine Vol.55 No.-

        Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast–myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-β-induced FMyT. In conclusion, our data unveil a novel MRTF-A–Zeb1–IRF9 axis that can potentially contribute to fibroblast–myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.

      • KCI등재

        Numerical Extraction of the Equivalent Circuit for a Basic Magnetoelectric Dipole Antenna

        Li Zhiyi,Tang Yuzhu,Zhao Zhifan,Deng Linwan,Zeng Hongzheng,Chen Xing 한국전자파학회 2024 Journal of Electromagnetic Engineering and Science Vol.24 No.2

        Magnetoelectric dipoles have attracted global research attention due to its broadband, unidirectional, and high front-to-back ratio characteristics. This study implemented a co-simulation between a basic magnetoelectric dipole and its front feeding circuit through the step-by-step numerical extraction of its equivalent circuit model equipped with lumped and frequency-independent components. First, the series resonance subcircuit was derived from the series resonance point in the impedance of the magnetoelectric dipole. Second, the parallel resonance sub-circuit was achieved based on the parallel resonance point. By combining the series and parallel sub-circuits according to the sequence of their resonance frequency, the final form of the equivalent circuit for the basic magnetoelectric dipole was realized. Furthermore, to obtain the component values of the proposed circuit, a numerical fitting technique was adopted to accurately match the input impedance of the antenna and its equivalent circuit. A comparison of the circuit and antenna electromagnetic simulations showed that they agreed well with each other. Hence, the correctness and feasibility of the extraction process were verified. The overall results showed that the proposed circuit model can easily substitute for a basic magnetoelectric dipole in the implementation of antenna/circuit cosimulation in circuit simulators.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼