RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analytical Prediction for Tunnel-Soil-Pile Interaction Mechanics based on Kerr Foundation Model

        Zhiguo Zhang,Chengping Zhang,Kangming Jiang,Zhiwei Wang,Yunjuan Jiang,Qihua Zhao,Minghao Lu 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.6

        Existing analytical method to predict tunneling-induced pile deformation is generally based on the Winkler foundation model that neglects shear effects of soil, which is not sufficient for engineering practice. A simplified solution based on Kerr foundation model is presented in this study to investigate the tunnel-soil-pile interaction. In order to improve the accuracy of the prediction for tunneling-induced free-field movements, the cavity contraction theory is utilized in the first stage which received a higher accuracy than the previous solution. In the second stage, the soil free-field displacement is imposed on the existing pile, and the simplified solution for pile deformation governed by the disturbance of passive displacement is established based on the Kerr foundation model, which can take account of the soil shear effects. The applicability and accuracy of the simplified solution are then verified by several cases including the reported analytical solution, centrifuge modeling tests and observed data in situ. Good agreements are obtained in the comparative analyses, which demonstrates that the proposed solution can serve as an alternative approach for conservatively estimating tunneling-induced pile deformation in the preliminary design in clay. Furthermore, the parametric analysis associated with the pile deformation has also been performed. As a result, it is of primarily theoretical and practical significance to investigate the influence of soil shear effects on the tunnel-soil-pile interaction mechanics.

      • KCI등재

        Fatty Acid-Binding Protein 4 in Patients with and without Diabetic Retinopathy

        Ping Huang,Xiaoqin Zhao,Yi Sun,Xinlei Wang,Rong Ouyang,Yanqiu Jiang,Xiaoquan Zhang,Renyue Hu,Zhuqi Tang,Yunjuan Gu 대한당뇨병학회 2022 Diabetes and Metabolism Journal Vol.46 No.4

        Background: Fatty acid-binding protein 4 (FABP4) has been demonstrated to be a predictor of early diabetic nephropathy. However, little is known about the relationship between FABP4 and diabetic retinopathy (DR). This study explored the value of FABP4 as a biomarker of DR in patients with type 2 diabetes mellitus (T2DM).Methods: A total of 238 subjects were enrolled, including 20 healthy controls and 218 T2DM patients. Serum FABP4 levels were measured using a sandwich enzyme-linked immunosorbent assay. The grade of DR was determined using fundus fluorescence angiography. Based on the international classification of DR, all T2DM patients were classified into the following three subgroups: non-DR group, non-proliferative diabetic retinopathy (NPDR) group, and proliferative diabetic retinopathy (PDR) group. Multivariate logistic regression analyses were employed to assess the correlation between FABP4 levels and DR severity.Results: FABP4 correlated positively with DR severity (<i>r</i>=0.225, <i>P</i>=0.001). Receiver operating characteristic curve analysis was used to assess the diagnostic potential of FABP4 in identifying DR, with an area under the curve of 0.624 (37% sensitivity, 83.6% specificity) and an optimum cut-off value of 76.4 μg/L. Multivariate logistic regression model including FABP4 as a categorized binary variable using the cut-off value of 76.4 μg/L showed that the concentration of FABP4 above the cut-off value increased the risk of NPDR (odds ratio [OR], 3.231; 95% confidence interval [CI], 1.574 to 6.632; <i>P</i>=0.001) and PDR (OR, 3.689; 95% CI, 1.306 to 10.424; <i>P</i>=0.014).Conclusion: FABP4 may be used as a serum biomarker for the diagnosis of DR.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼