RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Exothermic effects and related surface properties of the ex situ presulfurized catalysts in fabrication and activation

        Yulan Gao,Xiangchen Fang,Zhenmin Cheng,Liming Xu,Zhenhui Lu,Shanda Wang 한국공업화학회 2015 Journal of Industrial and Engineering Chemistry Vol.26 No.-

        An ex-situ presulfurization technology for transforming the metal oxides of hydrotreating catalyst to the corresponding metal oxy-sulfides was developed, involving pre-dispersion of an organo-nitrogen substance onto catalyst and a subsequent multi-step heat treatment. The inherence of exothermic effect involved in the ex situ pre-sulfurized catalyst fabrication and activation, and particularly the relationship between the exothermic effect and the surface property of catalyst were investigated. The results indicated that both the preparation parameters and the operating conditions can have effects on the exothermic behavior and surface state of the catalyst. The information obtained in the current study is useful for optimizing the EPRES process, essential for hydrotreating catalyst and its application.

      • KCI등재

        Melatonin attenuates microbiota dysbiosis of jejunum in short-term sleep deprived mice

        Gao Ting,Wang Zixu,Cao Jing,Dong Yulan,Chen Yaoxing 한국미생물학회 2020 The journal of microbiology Vol.58 No.7

        Our study demonstrated that sleep deprivation resulted in homeostasis disorder of colon. Our study goes deeper into the positive effects of melatonin on small intestinal microbiota disorder caused by sleep deprivation. We successfully established a multiplatform 72 h sleep deprivation mouse model with or without melatonin supplementation, and analyzed the change of small intestinal microbiota using high-throughput sequencing of the 16S rRNA. We found melatonin supplementation suppressed the decrease of plasma melatonin level in sleep deprivation mice. Meanwhile, melatonin supplementation improved significantly the reduction in OTU numbers and the diversity and richness of jejunal microbiota and the abundance of Bacteroidaeae and Prevotellaceae, as well as an increase in the Firmicutes-to-Bacteroidetes ratio and the content of Moraxellaceae and Aeromonadaceae in the jejunum of sleep deprived-mice. Moreover, melatonin supplementation reversed the change of metabolic pathway in sleep deprived-mice, including metabolism, signal transduction mechanisms and transcription etc, which were related to intestinal health. Furthermore, melatonin supplementation inverted the sleep deprivation-induced a decline of anti-inflammatory cytokines (IL-22) and an increase of the ROS and proinflammatory cytokines (IL-17) in jejunum. These findings suggested that melatonin, similar to a probiotics agent, can reverse sleep deprivation-induced small intestinal microbiota disorder by suppressing oxidative stress and inflammation response.

      • KCI등재

        Role of melatonin in murine “restraint stress”-induced dysfunction of colonic microbiota

        Lin Rutao,Wang Zixu,Cao Jing,Gao Ting,Dong Yulan,Chen Yaoxing 한국미생물학회 2021 The journal of microbiology Vol.59 No.5

        Intestinal diseases caused by physiological stress have become a severe public health threat worldwide. Disturbances in the gut microbiota-host relationship have been associated with irritable bowel disease (IBD), while melatonin (MT) has antiinflammatory and antioxidant effects. The objective of this study was to investigate the mechanisms by which MT-mediated protection mitigated stress-induced intestinal microbiota dysbiosis and inflammation. We successfully established a murine restraint stress model with and without MT supplementation. Mice subjected to restraint stress had significantly elevated corticosterone (CORT) levels, decreased MT levels in their plasma, elevated colonic ROS levels and increased bacterial abundance, including Bacteroides and Tyzzerella, in their colon tract, which led to elevated expression of Toll-like receptor (TLR) 2/4, p-P65 and p-IκB. In contrast, supplementation with 20 mg/kg MT reversed the elevation of the plasma CORT levels, downregulated the colon ROS levels and inhibited the changes in the intestinal microbiota induced by restraint stress. These effects, in turn, inhibited the activities of TLR2 and TLR4, p-P65 and p-IκB, and decreased the inflammatory reaction induced by restraint stress. Our results suggested that MT may mitigate “restraint stress”-induced colonic microbiota dysbiosis and intestinal inflammation by inhibiting the activation of the NF-κB pathway.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼