RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

        Jian Xu,Fei Zhong,Yonghong Zhang,Jianlou Zhang,Shanshan Huo,Hongyu Lin,Liyue Wang,Dan Cui,Xiujin Li 아세아·태평양축산학회 2017 Animal Bioscience Vol.30 No.4

        Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine β-defensin-2 (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and gram-positive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

      • SCIESCOPUSKCI등재

        Bio-based Epoxy Thermoset Containing Stilbene Structure with Ultrahigh T<SUB>g</SUB> and Excellent Flame Retardancy

        Guangming Lu,Xuezhen Wang,Na Teng,Jingyuan Hu,Liyue Zhang,Jinyue Dai,Yongjia Xu,Sakil Mahmud,Xiaoqing Liu 한국고분자학회 2021 폴리머 Vol.45 No.4

        Bio-based epoxy resins with an ultrahigh glass transition temperature (Tg) and excellent flame retardancy are critical for developing sustainable polymers. Herein, a novel trifunctional epoxy monomer triglycidyl ether of resveratrol (TGER) was synthesized from renewable resveratrol. The chemical structure of TGER was confirmed by Fourier transform infrared (FTIR), ¹H, and <SUP>13</SUP>C nuclear magnetic resonance (NMR) spectroscopy which was then reacted with 4,4’-diaminodiphenylmethane (DDM) to form resin. The obtained resin was evaluated in terms of flame retardance and thermal properties. The resultant TGER-DDM 240 resin shows excellent flame-retardant properties, presenting a residual char of 42.5% at 800 ℃, limiting oxygen index (LOI) of 31.2%, and flammability rating of V-0 in UL94 test. Moreover, the resin possesses an ultrahigh Tg at 294 ℃. This work provides a facile method for preparing high-performance flame-retardant epoxy resin from a renewable resource.

      • KCI등재

        Down-regulation of microRNA-155 suppressed Candida albicans induced acute lung injury by activating SOCS1 and inhibiting inflammation response

        Li Xiaohua,Gong Yuanzhong,Lin Xin,Lin Qiong,Luo Jianxiong,Yu Tianxing,Xu Junping,Chen Lifang,Xu Liyu,Hu Ying 한국미생물학회 2022 The journal of microbiology Vol.60 No.4

        Acute lung injury caused by Candida albicans could result in high mortality and morbidity. MicroRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) have been believed to play a key in the regulation of inflammatory response. Whether miR-155/SOCS1 axis could regulate the acute lung injury caused by C. albicans has not been reported. The acute lung injury animal model was established with acute infection of C. albicans. miR-155 inhibitor, miR-155 mimic, and sh-SOCS1 were constructed. The binding site between miR- 155 and SOCS1 was identified with dual luciferase reporter assay. Knockdown of miR-155 markedly inhibited the germ tube formation of C. albicans. Knockdown of miR-155 significantly up-regulated the expression of SOCS1, and the binding site between miR-155 and SOCS1 was identified. Knockdown of miR-155 improved the acute lung injury, suppressed inflammatory factors and fungus loading through SOCS1. Knockdown of SOCS1 greatly reversed the influence of miR- 155 inhibitor on the cell apoptosis in vitro. The improvement of acute lung injury caused by C. albicans, suppression of inflammatory response and C. albicans infection, and inhibitor of cell apoptosis were achieved by knocking down miR-155 through SOCS1. This research might provide a new thought for the prevention and treatment of acute lung injury caused by C. albicans through targeting miR-155/SOCS1 axis.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼