RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        An experimental study on the flexural performance of laminated glass

        Huang, Xiaokun,Liu, Gang,Liu, Qiang,Bennison, Stephen J. Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.2

        This paper reported an experimental study on creep behaviors of PVB and Ionoplast laminated glass (LG) under load duration of 30 days. The tests were carried out in room temperature ($23^{\circ}C$). The study revealed that after sustaining loads for 30 days, the mid-span deflection of PVB LG increased by almost 102% compared with its short term deflection, while that of Ionoplast LG approximately increased by 14%; composite effects between two glass plies in PVB LG gradually reduced with time, but did not fully vanish at the 30th day; two glass plies in Ionoplast LG on the other hand was able to withstand loads as an effective composite section during the entire loading period; the creep behaviors of both LG were not finished yet at the 30th day. In addition to this, also studied was the varying of the bending stresses of PVB and Ionoplast LG under load duration of 2 hours. The tests were carried out in ambient temperatures of $30^{\circ}C$, $50^{\circ}C$ and $80^{\circ}C$ respectively. It was found that under a given load, although the bending stresses of both LG increased with increasing temperature, for PVB LG the increasing rate of the bending stress decreased with increasing temperature, while for Ionoplast LG the increasing rate of the bending stress increased with increasing temperature.

      • SCIESCOPUS

        The flexural performance of laminated glass beams under elevated temperature

        Huang, Xiaokun,Liu, Gang,Liu, Qiang,Bennison, Stephen J. Techno-Press 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.52 No.3

        A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from $25^{\circ}C$ to $80^{\circ}C$. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From $25^{\circ}C$ to $80^{\circ}C$ the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to $50^{\circ}C$. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as $80^{\circ}C$. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from $25^{\circ}C$ to $80^{\circ}C$.

      • KCI등재

        The flexural performance of laminated glass beams under elevated temperature

        Xiaokun Huang,Gang Liu,Qiang Liu,Stephen J. Bennison 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.52 No.3

        A series of experimental work is carried out with the aim to understand the flexural performance of laminated glass (LG) beams using polyvinyl butyral (PVB) and Ionoplast interlayers subjected to short term duration loads in the circumstance of elevated temperature. The study is based on a total of 42 laboratory tests conducted in ambient temperature ranging from 25°C to 80°C. The load duration is kept within 20 seconds. Through the tests, load-stress and load-deflection curves of the LG are established; appropriate analytical models for the LG are indentified; the effective thicknesses as well as the shear transfer coefficients of the LG are semi-empirically determined. The test results show that within the studied temperature range the bending stresses and deflections at mid-span of the LG develop linearly with respect to the applied loads. From 25°C to 80°C the flexural behavior of the PVB LG is found constantly between that of monolithic glass and layered glass having the same nominal thickness; the flexural behavior of the Ionoplast LG is equivalent to monolithic glass of the same nominal thickness until the temperature elevates up to 50°C. The test results reveal that in calculating the effective thicknesses of the PVB and Ionoplast LG, neglecting the shear capacities of the interlayers is uneconomic even when the ambient temperature is as high as 80°C. In the particular case of this study, the shear transfer coefficient of the PVB interlayer is found in a range from 0.62 to 0.14 while that of the Ionoplast interlayer is found in a range from 1.00 to 0.56 when the ambient temperature varies from 25°C to 80°C.

      • KCI등재

        An experimental study on the flexural performance of laminated glass

        Xiaokun Huang,Gang Liu,Qiang Liu,Stephen J. Bennison 국제구조공학회 2014 Structural Engineering and Mechanics, An Int'l Jou Vol.49 No.2

        This paper reported an experimental study on creep behaviors of PVB and Ionoplast laminated glass (LG) under load duration of 30 days. The tests were carried out in room temperature (23°C). The study revealed that after sustaining loads for 30 days, the mid-span deflection of PVB LG increased by almost 102% compared with its short term deflection, while that of Ionoplast LG approximately increased by 14%; composite effects between two glass plies in PVB LG gradually reduced with time, but did not fully vanish at the 30th day; two glass plies in Ionoplast LG on the other hand was able to withstand loads as an effective composite section during the entire loading period; the creep behaviors of both LG were not finished yet at the 30th day. In addition to this, also studied was the varying of the bending stresses of PVB and Ionoplast LG under load duration of 2 hours. The tests were carried out in ambient temperatures of 30°C, 50°C and 80°C respectively. It was found that under a given load, although the bending stresses of both LG increased with increasing temperature, for PVB LG the increasing rate of the bending stress decreased with increasing temperature, while for Ionoplast LG the increasing rate of the bending stress increased with increasing temperature.

      • KCI등재

        Experimental investigation of multi-layered laminated glass beams under in-plane bending

        Qiang Liu,Xiaokun Huang,Gang Liu,Zhen Zhou,Gang Li 국제구조공학회 2016 Structural Engineering and Mechanics, An Int'l Jou Vol.60 No.5

        Due to its relatively good safety performance and aesthetic benefits, laminated glass (LG) is increasingly being used as load-carrying members in modern buildings. This paper presents an experimental study into one applicational scenario of structural LG subjected to in-plane bending. The aim of the study is to reveal the in-plane behaviors of the LG beams made up of multi-layered glass sheets. The LG specimens respectively consisted of two, three and four plies of glass, bonded together by two prominent adhesives. A total of 26 tests were carried out. From these tests, the structural behaviors in terms of flexural stiffness, load resistance and post-breakage strength were studied in detail, whilst considering the influence of interlayer type, cross-sectional interlayer percentage and presence of shear forces. Based on the test results, analytical suggestions were made, failure modes were identified, corresponding failure mechanisms were discussed, and a rational engineering model was proposed to predict the post-breakage strength of the LG beams. The results obtained are expected to provide useful information for academic and engineering professionals in the analysis and design of LG beams bending in-plane.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼