RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mesoscopic-scale grain formation in HfO2-based ferroelectric thin films and its impact on electrical characteristics

        Kobayashi Masaharu,Wu Jixuan,Sawabe Yoshiki,Takuya Saraya,Hiramoto Toshiro 나노기술연구협의회 2022 Nano Convergence Vol.9 No.50

        Ferroelectric memory devices are expected for low-power and high-speed memory applications. ­HfO 2 -based fer- roelectric is attracting attention for its CMOS-compatibility and high scalability. Mesoscopic-scale grains, of which size is almost comparable to device size, are formed in ­HfO 2 -based ferroelectric poly-crystalline thin films, which largely influences electrical characteristics in memory devices. It is important to study the impact of mesoscopic-scale grain formation on the electrical characteristics. In this work, first, we have studied the thickness dependence of the polarization switching kinetics in ­HfO 2 -based ferroelectric. While static low-frequency polarization is comparable for different thickness, dynamic polarization switching speed is slower in thin ­Hf 0.5 Zr 0.5 O 2 (HZO) capacitors. Based on the analysis using the NLS model and physical characterization, thinner HZO contains smaller grains with orientation non-uniformity and more grain boundaries than thicker HZO, which can impede macroscopic polarization switching. We have also theoretically and experimentally studied the polar-axis alignment of a ­HfO 2 -based ferroelectric thin film. While in-plane polar orientation is stable in as-grown HZO, out-of-plane polarization can be dominant by applying electric field, which indicates the transition from in-plane polar to out-of-plane polar orientation in the ferroelectric phase grains. This is confirmed by calculating kinetic pathway using ab-initio calculation.

      • KCI등재

        Energy-harvesting Q-learning secure routing algorithm with authenticated-encryption for WSN

        Li Cuiran,Wu Jixuan,Zhang Zepeng,Lv Anqi 한국통신학회 2023 ICT Express Vol.9 No.6

        Wireless sensor networks are susceptible to a variety of network attacks. Due to the limited energy of nodes and selfish nodes in the network, the packet delivery rate is lower. To address these issues, we innovatively propose an energy-harvesting Q-learning secure routing algorithm with authenticated-encryption. The algorithm uses physical unclonable functions and optimized Q-learning to ensure that the transmission path is reliable. Meanwhile, we combine the LSTM-based prediction model to predict the energy value that the nodes replenish. In addition, simulations are performed to compare the performances of the proposed algorithm with other algorithms under different attacks. The proposed algorithm has greater improvements in the packet delivery rate, filtering selfish nodes, and reducing node energy consumption.

      • KCI등재후보

        Bta-miR-365-3p-targeted FK506-binding protein 5 participates in the AMPK/mTOR signaling pathway in the regulation of preadipocyte differentiation in cattle

        Chen Mengdi,Zhang Congcong,Wu Zewen,Guo Siwei,Lv Wenfa,Song Jixuan,Hao Beibei,Bai Jinhui,Zhang Xinxin,Xu Hongyan,Xia Guangjun 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.7

        Objective: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood.Methods: We identified bta-miR-365-3p, which specifically targets the 3′ untranslated region (3′UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis.Results: In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes <i>C/EBPα</i> and <i>PPARγ</i>. The dualluciferase reporter system further validated the targeting relationship between bta-miR-365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365-3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5′-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365-3p significantly inhibited mRNA and protein expression of <i>AMPK, mTOR</i>, and <i>SREBP1</i> genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated <i>AMPK, mTOR</i>, and <i>SREBP1</i> gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results.Conclusion: In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the <i>FKBP5</i> gene. Objective: MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood. Methods: We identified bta-miR-365-3p, which specifically targets the 3′ untranslated region (3′UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis. Results: In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes C/EBPα and PPARγ. The dualluciferase reporter system further validated the targeting relationship between bta-miR365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365- 3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5′-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/ mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365- 3p significantly inhibited mRNA and protein expression of AMPK, mTOR, and SREBP1 genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated AMPK, mTOR, and SREBP1 gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results. Conclusion: In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the FKBP5 gene.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼