RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Role of moss and Arabidopsis zinc-finger homeodomain transcription factors in regulating plant architecture

        Lee Young Koung,김근화,Ware Doreen 한국식물생명공학회 2024 Plant biotechnology reports Vol.18 No.2

        Zinc-finger homeodomain transcription factors (ZF-HD TFs) are relatively a small gene family in Arabidopsis involved in plant development and stress response. However, the biological functions of ZF-HD TFs remain largely undiscovered. Here, we aimed to elucidate the evolutionary history and functional role of ZF-HD TFs in other species, by performing phylogenic analysis and domain and motif identification studies in Arabidopsis, sorghum (Sorghum bicolor), and moss (Physcomitrella patens). Forty-two ZF-HD TF proteins were classified into two distinct subfamilies based on the conserved ZF Cys/His-rich dimerization and homeodomain (HD) domains. The phylogenetic tree of proteins was further divided into five groups based on the similarity of sequences, and three distinct motifs were defined in the amino acid sequences. Genetic analysis revealed that the moss PpZF-HD1, Pp3c1_15290, gene partially rescued the amiR zf-HD-79 mutant lines at phenotypic and molecular levels. Subcellular localization studies revealed that moss PpZF-HD1 was localized in the cytosol and nuclei. Phylogenetic analysis and genetic complementation revealed that ZF-HD TFs play functional roles in regulating plant architecture, which is conserved in Arabidopsis, sorghum, and moss. Although our study is only a preliminary exploration into ZF-HD TFs, it provides a novel perspective that will help future researchers better understand the biological role of ZF-HD proteins in plants.

      • KCI등재

        HB31 and HB21 regulate floral architecture through miRNA396/GRF modules in Arabidopsis

        Lee Young Koung,Olson Andrew,김근화,Ohme-Takagi Masaru,Ware Doreen 한국식물생명공학회 2024 Plant biotechnology reports Vol.18 No.1

        Floral architecture plays a pivotal role in developmental processes under genetic regulation and is also influenced by envi- ronmental cues. This affects the plant silique phenotype in Arabidopsis and grain yield in crops. Despite the relatively small number of family members of zinc finger homeodomain (ZF-HD) transcription factors (TFs) in plants, their biological role needs to be investigated to understand the molecular mechanisms associated with plant developmental processes. Therefore, we generated HB31SRDX and HB21SRDX repressor mutant lines to understand the functional role of ZF-HD TFs. The mutant lines showed severe defects in plant architecture, including increased branching number, reduced plant height, dis- torted floral phenotype, and short silique. We found that HB31 and HB21 are paralogs in Arabidopsis, and both positively regulate cell size-related genes, cell wall modification factor-related genes, and M-type MADS-box TF families. In addition, HB31 and HB21 are negatively associated with abiotic stress-related genes, vegetative-to-reproductive phase transition of meristem-related genes, and TCP and RAV TFs. microRNA164 (miR164), miR822, miR396, miR2934, and miR172 were downregulated, whereas miR169, miR398, miR399, and miR157 were upregulated in the two repressor lines. Phenotypic and molecular analyses demonstrated that the miR396/GRF modules regulated by HB31 and HB21 are involved in the plan floral architecture of Arabidopsis. The findings of this study will help elucidate the role of ZF-HD TFs in maintaining the floral architecture.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼