RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Low‐Voltage Pulsed Electric Field Sterilization on a Microfluidic Chip

        Liu, Linlin,Zhao, Liping,Yang, Jun,Wan, Xiaoping,Hu, Ning,Yeh, Li‐,Hsien,Joo, Sang W.,Qian, Shizhi WILEY‐VCH Verlag 2013 Electroanalysis Vol.25 No.5

        <P><B>Abstract</B></P><P>A polyimide substrate based microfluidic chip with thousands of comb‐shaped microelectrodes has been designed, fabricated, and tested for sterilization of bacteria by using pulsed electric field. The performance of bacteria sterilization as functions of the electric field strength, pulse number and width, treatment buffer, bacteria growth status, and bacteria enrichment by positive dielectrophoresis has been experimentally investigated on the microfluidic chip. Experimental results show that only 100 V are sufficient to obtain good sterilization of <I>Escherichia coli</I>. Higher electric field strength, bacteria enrichment by positive dielectrophoresis, longer pulse time, buffer with fewer components and nutritions, and suitable bacteria growth status also improve the sterilization of bacteria. In addition, configuration of the microelectrode array affects bacteria sterilization. This microfluidic device allows one to preconcentrate bacteria to a region with high electric field strength by using positive dielectrophoresis, and subsequently kill the enriched bacteria by applying a pulsed electric field through the same microelectrode array.</P>

      • KCI등재

        Coffin-Siris syndrome in two chinese patients with novel pathogenic variants of ARID1A and SMARCA4

        Liu Mingjie,Wan Linlin,Wang Chunrong,Yuan Hongyu,Peng Yun,Wan Na,Tang Zhichao,Yuan Xinrong,Chen Daji,Long Zhe,Shi Yuting,Qiu Rong,Tang Beisha,Tang Beisha,Chen Zhao 한국유전학회 2022 Genes & Genomics Vol.44 No.9

        Background: Coffin-Siris syndrome (CSS) is a rare congenital syndrome characterized by developmental delay, intellectual disability, microcephaly, coarse face and hypoplastic nail of the fifth digits. Heterozygous variants of different BAF complex-related genes were reported to cause CSS, including ARID1A and SMARCA4. So far, no CSS patients with ARID1A and SMARCA4 variants have been reported in China. Objective: The aim of the current study was to identify the causes of two Chinese patients with congenital growth deficiency and intellectual disability. Methods: Genomic DNA was extracted from the peripheral venous blood of patients and their family members. Genetic analysis included whole-exome and Sanger sequencing. Pathogenicity assessments of variants were performed according to the guideline of the American College of Medical Genetics and Genomics. The phenotypic characteristics of all CSS subtypes were summarized through literature review. Results: We identified two Chinese CSS patients carrying novel variants of ARID1A and SMARCA4 respectively. The cases presented most core symptoms of CSS except for the digits involvement. Additionally, we performed a review of the phenotypic characteristics in CSS, highlighting phenotypic varieties and related potential causes. Conclusions: We reported the first Chinese CSS2 and CSS4 patients with novel variants of ARID1A and SMARCA4. Our study expanded the genetic and phenotypic spectrum of CSS, providing a comprehensive overview of genotype-phenotype correlations of CSS.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼