RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Estimation of heritabilities and additive genetic correlations for reproduction traits in swine: insights for tropical commercial production systems using multiple trait animal models

        Udomsak Noppibool,Thanathip Suwanasopee,Mauricio A. Elzo,Skorn Koonawootrittriron Asian Australasian Association of Animal Productio 2023 Animal Bioscience Vol.36 No.12

        Objective: This study was to estimate heritabilities, additive genetic correlations, and phenotypic correlations between number of piglets born alive (NBA), litter birth weight (LTBW), number of piglets weaned (NPW) and litter weaning weight (LTWW) in different parities of Landrace (L), Yorkshire (Y), Landrace×Yorkshire (LY), and Yorkshire×Landrace (YL) sows in a commercial swine operation in Northern Thailand. Methods: Two models were utilized, a single trait repeatability model (RM) and a multiple trait animal model (MTM). The RM assumed reproductive records from different parities to be repeated values of the same trait, whereas the MTM assumed these records to be different traits. The two models accounted for the fixed effects of farrowing year-season, genetic group of the sow, heterosis, and age at first farrowing, and the random effects of sow, boar, and residual. Results: Heritability estimates from RM were 0.02±0.01 for NBA, 0.10±0.01 for LTBW, 0.04±0.01 for NPW, and 0.11±0.01 for LTWW. Heritability estimates from MTM fluctuated across parities, ranging from 0.04±0.01 in parity 2 to 0.09±0.02 in parity 4 for NBA, 0.07±0.02 in parity 2 to 0.16±0.02 in parity 3 for LTBW, 0.04±0.02 in parity 4 to 0.08±0.01 in parity 1 for NPW, and 0.16±0.02 in parity 1 to 0.20±0.02 in parity 2 for LTWW. Additive genetic correlation estimates from MTM were also variable, ranging from 0.29±0.24 between NBA in parity 1 and NBA in parity 2 to 0.99±0.05 between LTWW in parity 3 and LTWW in parity 4. Conclusion: The findings of this study highlight the advantage of using MTM for the genetic improvement of reproductive traits in swine and contribute to the development of sustainable swine breeding programs in Thailand.

      • KCI등재후보

        Assessing reproductive performance and predictive models for litter size in Landrace sows under tropical conditions

        Thiengpimol Praew,Koonawootrittriron Skorn,Suwanasopee Thanathip 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.8

        Objective: Litter size and piglet loss at birth significantly impact piglet production and are closely associated with sow parity. Understanding how these traits vary across different parities is crucial for effective herd management. This study investigates the patterns of the number of born alive piglets (NBA), number of piglet losses (NPL), and the proportion of piglet losses (PPL) at birth in Landrace sows under tropical conditions. Additionally, it aims to identify the most suitable model for describing these patterns.Methods: A dataset comprising 2,322 consecutive reproductive records from 258 Landrace sows, spanning parities from 1 to 9, was analyzed. Modeling approaches including 2nd and 3rd degree polynomial models, the Wood gamma function, and a longitudinal model were applied at the individual level to predict NBA, NPL, and PPL. The choice of the best-fitting model was determined based on the lowest mean and standard deviation of the difference between predicted and actual values, Akaike information criterion (AIC), and Bayesian information criterion (BIC).Results: Sow parity significantly influenced NBA, NPL, and PPL (p<0.0001). NBA increased until the 4th parity and then declined. In contrast, NPL and PPL decreased until the 2nd parity and then steadily increased until the 8th parity. The 2nd and 3rd degree polynomials, and longitudinal models showed no significant differences in predicting NBA, NPL, and PPL (p>0.05). The 3rd degree polynomial model had the lowest prediction standard deviation and yielded the smallest AIC and BIC.Conclusion: The 3rd degree polynomial model offers the most suitable description of NBA, NPL, and PPL patterns. It holds promise for applications in genetic evaluations to enhance litter size and reduce piglet loss at birth in sows. These findings highlight the importance of accounting for sow parity effects in swine breeding programs, particularly in tropical conditions, to optimize piglet production and sow performance. Objective: Litter size and piglet loss at birth significantly impact piglet production and are closely associated with sow parity. Understanding how these traits vary across different parities is crucial for effective herd management. This study investigates the patterns of the number of born alive piglets (NBA), number of piglet losses (NPL), and the proportion of piglet losses (PPL) at birth in Landrace sows under tropical conditions. Additionally, it aims to identify the most suitable model for describing these patterns. Methods: A dataset comprising 2,322 consecutive reproductive records from 258 Landrace sows, spanning parities from 1 to 9, was analyzed. Modeling approaches including 2nd and 3rd degree polynomial models, the Wood gamma function, and a longitudinal model were applied at the individual level to predict NBA, NPL, and PPL. The choice of the best-fitting model was determined based on the lowest mean and standard deviation of the difference between predicted and actual values, Akaike information criterion (AIC), and Bayesian information criterion (BIC). Results: Sow parity significantly influenced NBA, NPL, and PPL (p<0.0001). NBA increased until the 4th parity and then declined. In contrast, NPL and PPL decreased until the 2nd parity and then steadily increased until the 8th parity. The 2nd and 3rd degree polynomials, and longitudinal models showed no significant differences in predicting NBA, NPL, and PPL (p>0.05). The 3rd degree polynomial model had the lowest prediction standard deviation and yielded the smallest AIC and BIC. Conclusion: The 3rd degree polynomial model offers the most suitable description of NBA, NPL, and PPL patterns. It holds promise for applications in genetic evaluations to enhance litter size and reduce piglet loss at birth in sows. These findings highlight the importance of accounting for sow parity effects in swine breeding programs, particularly in tropical conditions, to optimize piglet production and sow performance.

      • KCI등재후보

        A comparison of five sets of overlapping and non-overlapping sliding windows for semen production traits in the Thai multibreed dairy population

        Sarakul Mattaneeya,Elzo Mauricio A.,Koonawootrittriron Skorn,Suwanasopee Thanathip,Jattawa Danai,Laodim Thawee 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.3

        Objective: This study compared five distinct sets of biological pathways and associated genes related to semen volume (VOL), number of sperm (NS), and sperm motility (MOT) in the Thai multibreed dairy population. Methods: The phenotypic data included 13,533 VOL records, 12,773 NS records, and 12,660 MOT records from 131 bulls. The genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNPs) from 72 animals. The SNP additive genetic variances for VOL, NS, and MOT were estimated for SNP windows of one SNP (SW1), ten SNP (SW10), 30 SNP (SW30), 50 SNP (SW50), and 100 SNP (SW100) using a single-step genomic best linear unbiased prediction approach. The fixed effects in the model were contemporary group, ejaculate order, bull age, ambient temperature, and heterosis. The random effects accounted for animal additive genetic effects, permanent environment effects, and residual. The SNPs explaining at least 0.001% of the additive genetic variance in SW1, 0.01% in SW10, 0.03% in SW30, 0.05% in SW50, and 0.1% in SW100 were selected for gene identification through the NCBI database. The pathway analysis utilized genes associated with the identified SNP windows. Results: Comparison of overlapping and non-overlapping SNP windows revealed notable differences among the identified pathways and genes associated with the studied traits. Overlapping windows consistently yielded a larger number of shared biological pathways and genes than non-overlapping windows. In particular, overlapping SW30 and SW50 identified the largest number of shared pathways and genes in the Thai multibreed dairy population. Conclusion: This study yielded valuable insights into the genetic architecture of VOL, NS, and MOT. It also highlighted the importance of assessing overlapping and non-overlapping SNP windows of various sizes for their effectiveness to identify shared pathways and genes influencing multiple traits.

      • KCI등재

        Accuracy of genomic-polygenic estimated breeding value for milk yield and fat yield in the Thai multibreed dairy population with five single nucleotide polymorphism sets

        Bodin Wongpom,Skorn Koonawootrittriron,Mauricio A. Elzo,Thanathip Suwanasopee,Danai Jattawa 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.9

        Objective: The objectives were to compare variance components, genetic parameters, prediction accuracies, and genomic-polygenic estimated breeding value (EBV) rankings for milk yield (MY) and fat yield (FY) in the Thai multibreed dairy population using five single nucleotide polymorphism (SNP) sets from GeneSeek GGP80K chip. Methods: The dataset contained monthly MY and FY of 8,361 first-lactation cows from 810 farms. Variance components, genetic parameters, and EBV for five SNP sets from the GeneSeek GGP80K chip were obtained using a 2-trait single-step average-information restricted maximum likelihood procedure. The SNP sets were the complete SNP set (all available SNP; SNP100), top 75% set (SNP75), top 50% set (SNP50), top 25% set (SNP25), and top 5% set (SNP5). The 2-trait models included herd-year-season, heterozygosity and age at first calving as fixed effects, and animal additive genetic and residual as random effects. Results: The estimates of additive genetic variances for MY and FY from SNP subsets were mostly higher than those of the complete set. The SNP25 MY and FY heritability estimates (0.276 and 0.183) were higher than those from SNP75 (0.265 and 0.168), SNP50 (0.275 and 0.179), SNP5 (0.231 and 0.169), and SNP100 (0.251and 0.159). The SNP25 EBV accuracies for MY and FY (39.76% and 33.82%) were higher than for SNP75 (35.01% and 32.60%), SNP50 (39.64% and 33.38%), SNP5 (38.61% and 29.70%), and SNP100 (34.43% and 31.61%). All rank correlations between SNP100 and SNP subsets were above 0.98 for both traits, except for SNP100 and SNP5 (0.93 for MY; 0.92 for FY). Conclusion: The high SNP25 estimates of genetic variances, heritabilities, EBV accuracies, and rank correlations between SNP100 and SNP25 for MY and FY indicated that genotyping animals with SNP25 dedicated chip would be a suitable to maintain genotyping costs low while speeding up genetic progress for MY and FY in the Thai dairy population.

      • KCI등재

        Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population

        Thawee Laodim,Mauricio A. Elzo,Skorn Koonawootrittriron,Thanathip Suwanasopee,Danai Jattawa 아세아·태평양축산학회 2019 Animal Bioscience Vol.32 No.4

        Objective: This research aimed to determine biological pathways and protein-protein interaction (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving (AFC) in the Thai multibreed dairy population. Methods: Genotypic information contained 75,776 imputed and actual single nucleotide polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predictions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included herd-year-season, breed regression and heterosis regression effects. Random effects were animal additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance for each trait were used to identify nearby genes in the National Center for Biotechnology Information database. Pathway enrichment analysis was performed. The PPI of genes were identified and visualized of the PPI network. Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. Most genes had two or more connections with other genes in the PPI network. Genes associated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved in cellular processes. The percent of the genetic variance explained by genes in enriched pathways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network (265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. Conclusion: These sets of SNP associated with genes in the set enriched pathways and the PPI network could be used as genomic selection targets in the Thai multibreed dairy population. This study should be continued both in this and other populations subject to a variety of environmental conditions because predicted SNP values will likely differ across populations subject to different environmental conditions and changes over time.

      • KCI등재

        Genetic correlations between first parity and accumulated second to last parity reproduction traits as selection aids to improve sow lifetime productivity

        Udomsak Noppibool,Mauricio A. Elzo,Skorn Koonawootrittriron,Thanathip Suwanasopee 아세아·태평양축산학회 2017 Animal Bioscience Vol.30 No.3

        Objective: The objective of this research was to estimate genetic correlations between number of piglets born alive in the first parity (NBA1), litter birth weight in the first parity (LTBW1), number of piglets weaned in the first parity (NPW1), litter weaning weight in the first parity (LTWW1), number of piglets born alive from second to last parity (NBA2+), litter birth weight from second to last parity (LTBW2+), number of piglets weaned from second to last parity (NPW2+) and litter weaning weight from second to last parity (LTWW2+), and to identify the percentages of animals (the top 10%, 25%, and 50%) for first parity and sums of second and later parity traits. Methods: The 9,830 records consisted of 2,124 Landrace (L), 724 Yorkshire (Y), 2,650 LY, and 4,332 YL that had their first farrowing between July 1989 and December 2013. The 8-trait animal model included the fixed effects of first farrowing year-season, additive genetic group, heterosis of the sow and the litter, age at first farrowing, and days to weaning (NPW1, LTWW1, NPW2+, and LTWW2+). Random effects were animal and residual. Results: Heritability estimates ranged from 0.08±0.02 (NBA1 and NPW1) to 0.29±0.02 (NPW2+). Genetic correlations between reproduction traits in the first parity and from second to last parity ranged from 0.17±0.08 (LTBW1 and LTBW2+) to 0.67±0.06 (LTWW1 and LTWW2+). Phenotypic correlations between reproduction traits in the first parity and from second to last parity were close to zero. Rank correlations between LTWW1 and LTWW2+ estimated breeding value tended to be higher than for other pairs of traits across all replacement percentages. Conclusion: These rank correlations indicated that selecting boars and sows using genetic predictions for first parity reproduction traits would help improve reproduction traits in the second and later parities as well as lifetime productivity in this swine population.

      • SCIESCOPUSKCI등재

        Estimation of Genetic Parameters and Trends for Length of Productive Life and Lifetime Production Traits in a Commercial Landrace and Yorkshire Swine Population in Northern Thailand

        Noppibool, Udomsak,Elzo, Mauricio A.,Koonawootrittriron, Skorn,Suwanasopee, Thanathip Asian Australasian Association of Animal Productio 2016 Animal Bioscience Vol.29 No.9

        The objective of this research was to estimate genetic parameters and trends for length of productive life (LPL), lifetime number of piglets born alive (LBA), lifetime number of piglets weaned (LPW), lifetime litter birth weight (LBW), and lifetime litter weaning weight (LWW) in a commercial swine farm in Northern Thailand. Data were gathered during a 24-year period from July 1989 to August 2013. A total of 3,109 phenotypic records from 2,271 Landrace (L) and 838 Yorkshire sows (Y) were analyzed. Variance and covariance components, heritabilities and correlations were estimated using an Average Information Restricted Maximum Likelihood (AIREML) procedure. The 5-trait animal model contained the fixed effects of first farrowing year-season, breed group, and age at first farrowing. Random effects were sow and residual. Estimates of heritabilities were medium for all five traits ($0.17{\pm}0.04$ for LPL and LBA to $0.20{\pm}0.04$ for LPW). Genetic correlations among these traits were high, positive, and favorable (p<0.05), ranging from $0.93{\pm}0.02$ (LPL-LWW) to $0.99{\pm}0.02$ (LPL-LPW). Sow genetic trends were non-significant for LPL and all lifetime production traits. Sire genetic trends were negative and significant for LPL ($-2.54{\pm}0.65d/yr$; p = 0.0007), LBA ($-0.12{\pm}0.04piglets/yr$; p = 0.0073), LPW ($-0.14{\pm}0.04piglets/yr$; p = 0.0037), LBW ($-0.13{\pm}0.06kg/yr$; p = 0.0487), and LWW ($-0.69{\pm}0.31kg/yr$; p = 0.0365). Dam genetic trends were positive, small and significant for all traits ($1.04{\pm}0.42d/yr$ for LPL, p = 0.0217; $0.16{\pm}0.03piglets/yr$ for LBA, p<0.0001; $0.12{\pm}0.03piglets/yr$ for LPW, p = 0.0002; $0.29{\pm}0.04kg/yr$ for LBW, p<0.0001 and $1.23{\pm}0.19kg/yr$ for LWW, p<0.0001). Thus, the selection program in this commercial herd managed to improve both LPL and lifetime productive traits in sires and dams. It was ineffective to improve LPL and lifetime productive traits in sows.

      • SCIESCOPUSKCI등재

        Variance Components and Genetic Parameters for Milk Production and Lactation Pattern in an Ethiopian Multibreed Dairy Cattle Population

        Gebreyohannes, Gebregziabher,Koonawootrittriron, Skorn,Elzo, Mauricio A.,Suwanasopee, Thanathip Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.9

        The objective of this study was to estimate variance components and genetic parameters for lactation milk yield (LY), lactation length (LL), average milk yield per day (YD), initial milk yield (IY), peak milk yield (PY), days to peak (DP) and parameters (ln(a) and c) of the modified incomplete gamma function (MIG) in an Ethiopian multibreed dairy cattle population. The dataset was composed of 5,507 lactation records collected from 1,639 cows in three locations (Bako, Debre Zeit and Holetta) in Ethiopia from 1977 to 2010. Parameters for MIG were obtained from regression analysis of monthly test-day milk data on days in milk. The cows were purebred (Bos indicus) Boran (B) and Horro (H) and their crosses with different fractions of Friesian (F), Jersey (J) and Simmental (S). There were 23 breed groups (B, H, and their crossbreds with F, J, and S) in the population. Fixed and mixed models were used to analyse the data. The fixed model considered herd-year-season, parity and breed group as fixed effects, and residual as random. The single and two-traits mixed animal repeatability models, considered the fixed effects of herd-year-season and parity subclasses, breed as a function of cow H, F, J, and S breed fractions and general heterosis as a function of heterozygosity, and the random additive animal, permanent environment, and residual effects. For the analysis of LY, LL was added as a fixed covariate to all models. Variance components and genetic parameters were estimated using average information restricted maximum likelihood procedures. The results indicated that all traits were affected (p<0.001) by the considered fixed effects. High grade $B{\times}F$ cows (3/16B 13/16F) had the highest least squares means (LSM) for LY ($2,490{\pm}178.9kg$), IY ($10.5{\pm}0.8kg$), PY ($12.7{\pm}0.9kg$), YD ($7.6{\pm}0.55kg$) and LL ($361.4{\pm}31.2d$), while B cows had the lowest LSM values for these traits. The LSM of LY, IY, YD, and PY tended to increase from the first to the fifth parity. Single-trait analyses yielded low heritability ($0.03{\pm}0.03$ and $0.08{\pm}0.02$) and repeatability ($0.14{\pm}0.01$ to $0.24{\pm}0.02$) estimates for LL, DP and parameter c. Medium heritability ($0.21{\pm}0.03$ to $0.33{\pm}0.04$) and repeatability ($0.27{\pm}0.02$ to $0.53{\pm}0.01$) estimates were obtained for LY, IY, PY, YD and ln(a). Genetic correlations between LY, IY, PY, YD, ln(a), and LL ranged from 0.59 to 0.99. Spearman's rank correlations between sire estimated breeding values for LY, LL, IY, PY, YD, ln(a) and c were positive (0.67 to 0.99, p<0.001). These results suggested that selection for IY, PY, YD, or LY would genetically improve lactation milk yield in this Ethiopian dairy cattle population.

      • KCI등재후보

        Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: insights from quantitative trait loci analysis and gene associations

        Laodim Thawee,Koonawootrittriron Skorn,Elzo Mauricio A.,Suwanasopee Thanathip,Jattawa Danai,Sarakul Mattaneeya 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.4

        Objective: The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions. Methods: A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-yearseason, breed regression, heterosis regression and calving age regression effects. Random effects were animal additive genetic and residual. Individual SNPs with a p-value smaller than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci (QTL) annotation analysis. Results: A substantial number of QTLs associated with MY (9,334) and FY (8,977) were identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 17 annotated QTLs within the health and exterior QTL classes, corresponding to nine unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed signs of positive selection, indicating their potential role in conferring tolerance to trypanosomiasis, a prevalent tropical disease. Conclusion: Our findings provide valuable insights into the genetic basis of MY and FY in the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of tropical adaptation. The identified genes represent promising targets for future breeding strategies aimed at improving milk and fat production while ensuring resilience to tropical challenges. This study significantly contributes to our understanding of the genetic factors influencing milk production and adaptability in dairy cattle, facilitating the development of sustainable genetic selection strategies and breeding programs in tropical environments.

      • SCIESCOPUSKCI등재

        Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population

        Jattawa, Danai,Elzo, Mauricio A.,Koonawootrittriron, Skorn,Suwanasopee, Thanathip Asian Australasian Association of Animal Productio 2016 Animal Bioscience Vol.29 No.4

        The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244) from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570), GGP26K (n = 540) and GGP80K (n = 134) chips. After checking for single nucleotide polymorphism (SNP) quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912) and a test group (n = 332). The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652). The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm), FImpute 2.2 (combined family- and population-based algorithms) and Findhap 4 (combined family- and population-based algorithms). Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94%) than Findhap (84.64%) and Beagle (76.79%). Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73%) or low (80%) imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart). Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼