RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        qMon: A Method to Monitor Queueing Delay in OpenFlow Networks

        Sandhya Rathee,Shubham Tiwari,K Haribabu,Ashutosh Bhatia 한국통신학회 2022 Journal of communications and networks Vol.24 No.4

        In software-defined networking (SDN), the decou- pled architecture provides opportunities for efficiently measuring critical quality of service (QoS) parameters, such as delay. Existing approaches, to dynamically obtain delay, are based around calculating the transit time of a probe packet that travels through the data links. These approaches are not efficient as the probe packet injected into the data plane incurs considerable overhead. Additionally, a separate probe packet is required to measure the delay of each queue if more than one queue is present on the egress port of a switch. Thus, these approaches are not scalable. In this paper, we propose an efficient passive delay estimation method, queueing delay monitoring (qMon), to monitor queueing delay in SDN networks. qMon leverages the OpenFlow protocol to obtain queue statistics from switches at regular intervals, which are further employed to estimate the mean queueing delay for each interval. Thus, the proposed approach differs from the existing approaches as no packet is injected into the data plane to measure delay. The results show that for Poisson traffic and for bursty traffic with large ON intervals, round trip time (RTT) values estimated using qMon and ping utility demonstrate high correlation when the measured RTT value is considered as time-series data.

      • KCI등재

        Bi-axial and shear buckling of laminated composite rhombic hypar shells

        Abhay K. Chaubey,Shubham Raj,Pratik Tiwari,Ajay Kumar,Anupam Chakrabarti,K.K. Pathak 국제구조공학회 2020 Structural Engineering and Mechanics, An Int'l Jou Vol.74 No.2

        The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼