RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

        Mohammad M. Maddah,Sassan Eshghi,Alireza Garakaninezhad 국제구조공학회 2022 Structural Engineering and Mechanics, An Int'l Jou Vol.82 No.5

        Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

      • KCI등재

        The structural detailing effect on seismic behavior of steel moment resisting connections

        Hooman Farrokhi,F. Ahmadi Danesh,Sassan Eshghi 국제구조공학회 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.35 No.5

        Different types of moment resisting connections are commonly used to transfer the induced seismic moments between frame elements in an earthquake resisting structure. The local connection behavior may drastically affect the global seismic response of the structure. In this study, the finite element and experimental seismic investigations are implemented on two frequently used connection type to evaluate the local behavior and to reveal the failure modes. An alternative connection type is then proposed to eliminate the unfavorable brittle fracture modes resulted from probable poor welding quality. This will develop a reliable predefined ductile plastic mechanism forming away from the critical locations. Employing this technique, the structural reliability of the moment resisting connections shall be improved by achieving a controllable energy dissipation source in form of yielding of the cover plates.

      • SCIESCOPUS

        The structural detailing effect on seismic behavior of steel moment resisting connections

        Farrokhi, Hooman,Danesh, F. Ahmadi,Eshghi, Sassan Techno-Press 2010 Structural Engineering and Mechanics, An Int'l Jou Vol.35 No.5

        Different types of moment resisting connections are commonly used to transfer the induced seismic moments between frame elements in an earthquake resisting structure. The local connection behavior may drastically affect the global seismic response of the structure. In this study, the finite element and experimental seismic investigations are implemented on two frequently used connection type to evaluate the local behavior and to reveal the failure modes. An alternative connection type is then proposed to eliminate the unfavorable brittle fracture modes resulted from probable poor welding quality. This will develop a reliable predefined ductile plastic mechanism forming away from the critical locations. Employing this technique, the structural reliability of the moment resisting connections shall be improved by achieving a controllable energy dissipation source in form of yielding of the cover plates.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼