RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Isostructural metal-insulator transition in VO<sub>2</sub>

        Lee, D.,Chung, B.,Shi, Y.,Kim, G.-Y.,Campbell, N.,Xue, F.,Song, K.,Choi, S.-Y.,Podkaminer, J. P.,Kim, T. H.,Ryan, P. J.,Kim, J.-W.,Paudel, T. R.,Kang, J.-H.,Spinuzzi, J. W.,Tenne, D. A.,Tsymbal, E. Y. American Association for the Advancement of Scienc 2018 Science Vol.362 No.6418

        <P><B>Separating structure and electrons in VO<SUB>2</SUB></B></P><P>Above 341 kelvin—not far from room temperature—bulk vanadium dioxide (VO<SUB>2</SUB>) is a metal. But as soon as the material is cooled below 341 kelvin, VO<SUB>2</SUB> turns into an insulator and, at the same time, changes its crystal structure from rutile to monoclinic. Lee <I>et al.</I> studied the peculiar behavior of a heterostructure consisting of a layer of VO<SUB>2</SUB> placed underneath a layer of the same material that has a bit less oxygen. In the VO<SUB>2</SUB> layer, the structural transition occurred at a higher temperature than the metal-insulator transition. In between those two temperatures, VO<SUB>2</SUB> was a metal with a monoclinic structure—a combination that does not occur in the absence of the adjoining oxygen-poor layer.</P><P><I>Science</I>, this issue p. 1037</P><P>The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.</P>

      • KCI등재

        In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds

        Naghmeh Abbasi,Ryan S. B. Lee,Saso Ivanovski,Robert M. Love,Stephen Hamlet 한국생체재료학회 2020 생체재료학회지 Vol.24 No.4

        Background: Biomaterial-based bone tissue engineering represents a promising solution to overcome reduced residual bone volume. It has been previously demonstrated that gradient and offset architectures of threedimensional melt electrowritten poly-caprolactone (PCL) scaffolds could successfully direct osteoblast cells differentiation toward an osteogenic lineage, resulting in mineralization. The aim of this study was therefore to evaluate the in vivo osteoconductive capacity of PCL scaffolds with these different architectures. Methods: Five different calcium phosphate (CaP) coated melt electrowritten PCL pore sized scaffolds: 250 μm and 500 μm, 500 μm with 50% fibre offset (offset.50.50), tri layer gradient 250–500-750 μm (grad.250top) and 750–500-250 μm (grad.750top) were implanted into rodent critical-sized calvarial defects. Empty defects were used as a control. After 4 and 8 weeks of healing, the new bone was assessed by micro-computed tomography and immunohistochemistry. Results: Significantly more newly formed bone was shown in the grad.250top scaffold 8 weeks postimplantation. Histological investigation also showed that soft tissue was replaced with newly formed bone and fully covered the grad.250top scaffold. While, the bone healing did not happen completely in the 250 μm, offset.50.50 scaffolds and blank calvaria defects following 8 weeks of implantation. Immunohistochemical analysis showed the expression of osteogenic markers was present in all scaffold groups at both time points. The mineralization marker Osteocalcin was detected with the highest intensity in the grad.250top and 500 μm scaffolds. Moreover, the expression of the endothelial markers showed that robust angiogenesis was involved in the repair process. Conclusions: These results suggest that the gradient pore size structure provides superior conditions for bone regeneration.

      • SCISCIESCOPUS

        Study of turbulent fluctuations driven by the electron temperature gradient in the National Spherical Torus Experiment

        Mazzucato, E.,Bell, R.E.,Ethier, S.,Hosea, J.C.,Kaye, S.M.,LeBlanc, B.P.,Lee, W.W.,Ryan, P.M.,Smith, D.R.,Wang, W.X.,Wilson, J.R.,Yuh, H. International Atomic Energy Agency 2009 Nuclear fusion Vol.49 No.5

        <P>Various theories and numerical simulations support the conjecture that the ubiquitous problem of anomalous electron transport in tokamaks may arise from a short-scale turbulence driven by the electron temperature gradient. To check whether this turbulence is present in plasmas of the National Spherical Torus Experiment, measurements of turbulent fluctuations were performed with coherent scattering of electromagnetic waves. Results from plasmas heated by high harmonic fast waves show the existence of density fluctuations in the range of wave numbers <I>k</I><SUB>⊥</SUB>ρ<SUB>e</SUB> = 0.1–0.4, corresponding to a turbulence scale length of the order of the collisionless skin depth. Experimental observations and agreement with numerical results from the linear gyro-kinetic GS2 code indicate that the observed turbulence is driven by the electron temperature gradient. These turbulent fluctuations were not observed at the location of an internal transport barrier driven by a negative magnetic shear.</P>

      • SCISCIESCOPUS

        Sea spray aerosol as a unique source of ice nucleating particles

        DeMott, Paul J.,Hill, Thomas C. J.,McCluskey, Christina S.,Prather, Kimberly A.,Collins, Douglas B.,Sullivan, Ryan C.,Ruppel, Matthew J.,Mason, Ryan H.,Irish, Victoria E.,Lee, Taehyoung,Hwang, Chung Y National Academy of Sciences 2016 Proceedings of the National Academy of Sciences Vol.113 No.21

        <P>Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 degrees C, averaging an order of magnitude increase per 5 degrees C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using 'dry' geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.</P>

      • SCISCIESCOPUS

        The X-ray counterpart to the gravitational-wave event GW170817

        Troja, E.,Piro, L.,van Eerten, H.,Wollaeger, R. T.,Im, M.,Fox, O. D.,Butler, N. R.,Cenko, S. B.,Sakamoto, T.,Fryer, C. L.,Ricci, R.,Lien, A.,Ryan Jr, R. E.,Korobkin, O.,Lee, S.-K.,Burgess, J. M.,Lee, Nature Publishing Group 2017 Nature Vol. No.

        A long-standing paradigm in astrophysics is that collisions—or mergers—of two neutron stars form highly relativistic and collimated outflows (jets) that power γ-ray bursts of short (less than two seconds) duration. The observational support for this model, however, is only indirect. A hitherto outstanding prediction is that gravitational-wave events from such mergers should be associated with γ-ray bursts, and that a majority of these bursts should be seen off-axis, that is, they should point away from Earth. Here we report the discovery observations of the X-ray counterpart associated with the gravitational-wave event GW170817. Although the electromagnetic counterpart at optical and infrared frequencies is dominated by the radioactive glow (known as a ‘kilonova’) from freshly synthesized rapid neutron capture (r-process) material in the merger ejecta, observations at X-ray and, later, radio frequencies are consistent with a short γ-ray burst viewed off-axis. Our detection of X-ray emission at a location coincident with the kilonova transient provides the missing observational link between short γ-ray bursts and gravitational waves from neutron-star mergers, and gives independent confirmation of the collimated nature of the γ-ray-burst emission.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼