RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system

        Corey, Peter,Kim, Jang K.,Duston, Jim,Garbary, David J. The Korean Society of Phycology 2014 ALGAE Vol.29 No.1

        Palmaria palmata was integrated with Atlantic halibut Hippoglossus hippoglossus on a commercial farm for one year starting in November, with a temperature range of 0.4 to $19.1^{\circ}C$. The seaweed was grown in nine plastic mesh cages (each $1.25m^3$ volume) suspended in a concrete sump tank ($46m^3$) in each of three recirculating systems. Two tanks received effluent water from tanks stocked with halibut, and the third received ambient seawater serving as a control. Thalli were tumbled by continuous aeration, and held under a constant photoperiod of 16 : 8 (L : D). Palmaria stocking density was $2.95kg\;m^{-3}$ initially, increasing to $9.85kg\;m^{-3}$ after a year. Specific growth rate was highest from April to June (8.0 to $9.0^{\circ}C$), 1.1% $d^{-1}$ in the halibut effluent and 0.8% $d^{-1}$ in the control, but declined to zero or less than zero above $14^{\circ}C$. Total tissue nitrogen of Palmaria in effluent water was 4.2 to 4.4% DW from January to October, whereas tissue N in the control system declined to 3.0-3.6% DW from April to October. Tissue carbon was independent of seawater source at 39.9% DW. Estimated tank space required by Palmaria for 50% removal of the nitrogen excreted by 100 t of halibut during winter is about 29,000 to $38,000m^2$, ten times the area required for halibut culture. Fifty percent removal of carbon from the same system requires 7,200 to $9,800m^2$ cultivation area. Integration of P. palmata with Atlantic halibut is feasible below $10^{\circ}C$, but is impractical during summer months due to disintegration of thalli associated with reproductive maturation.

      • KCI등재

        Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system

        Peter Corey,김장균,Jim Duston,David J. Garbary 한국조류학회I 2014 ALGAE Vol.29 No.1

        Palmaria palmata was integrated with Atlantic halibut Hippoglossus hippoglossus on a commercial farm for one year starting in November, with a temperature range of 0.4 to 19.1°C. The seaweed was grown in nine plastic mesh cages (each 1.25 m3 volume) suspended in a concrete sump tank (46 m3) in each of three recirculating systems. Two tanks received effluent water from tanks stocked with halibut, and the third received ambient seawater serving as a control. Thalli were tumbled by continuous aeration, and held under a constant photoperiod of 16 : 8 (L : D). Palmaria stocking density was 2.95 kg m-3 initially, increasing to 9.85 kg m-3 after a year. Specific growth rate was highest from April to June (8.0 to 9.0°C), 1.1% d-1 in the halibut effluent and 0.8% d-1 in the control, but declined to zero or less than zero above 14°C. Total tissue nitrogen of Palmaria in effluent water was 4.2 to 4.4% DW from January to October, whereas tissue N in the control system declined to 3.0-3.6% DW from April to October. Tissue carbon was independent of seawater source at 39.9% DW. Estimated tank space required by Palmaria for 50% removal of the nitrogen excreted by 100 t of halibut during winter is about 29,000 to 38,000 m2, ten times the area required for halibut culture. Fifty percent removal of carbon from the same system requires 7,200 to 9,800 m2 cultivation area. Integration of P. palmata with Atlantic halibut is feasible below 10°C, but is impractical during summer months due to disintegration of thalli associated with reproductive maturation.

      • SCIESCOPUSKCI등재

        Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta)

        Garbary, David J.,Tompkins, Elizabeth,White, Katelyn,Corey, Peter,Kim, Jang-K. The Korean Society of Phycology 2011 ALGAE Vol.26 No.1

        Thirty populations of Chondrus crispus Stackhouse from Nova Scotia were collected during the years 1993 to 2011. Taken from estuaries, wave exposed open coasts, high intertidal rock pools and shallow subtidal habitats, the populations were evaluated for relative abundance of tetrasporophytic and gametophytic life history phases. Over 2,800 thalli were characterized using the resorcinol-acetal test to distinguish the kappa- and lambda-carrageenan containing fronds of gametophytes and tetrasporophytes, respectively. These populations had $77{\pm}5%$ gametophytes (mean ${\pm}95%$ confidence interval), with most populations having gametophyte : sporophyte ratios ranging from 2 : 1 to 9 : 1. No population had a dominance of tetrasporophytes, although two populations had 1 : 1 ratios. A meta-analysis of our data along with previously published accounts showed no significant changes in gametophyte dominance with respect to hypothesized gradients of wave exposure, salinity, or water depth. Significant changes occurred in ratios at five sites where replicate sampling occurred in different years. We conclude that C. crispus in Maritime Canada has a natural ratio of 3 : 1 or greater in stable conditions, and that lower ratios represent recovery from disturbance in which bare substratum is created that is subsequently colonized by carpospores from remaining gametophytic thalli.

      • KCI등재

        Temporal and spatial variation in the distribution of life history phases of Chondrus crispus (Gigartinales, Rhodophyta)

        David J. Garbary,Elizabeth Tompkins,Katelyn White,Peter Corey,김장균 한국조류학회I 2011 ALGAE Vol.26 No.1

        Thirty populations of Chondrus crispus Stackhouse from Nova Scotia were collected during the years 1993 to 2011. Taken from estuaries, wave exposed open coasts, high intertidal rock pools and shallow subtidal habitats, the populations were evaluated for relative abundance of tetrasporophytic and gametophytic life history phases. Over 2,800 thalli were characterized using the resorcinol-acetal test to distinguish the kappa- and lambda-carrageenan containing fronds of gametophytes and tetrasporophytes, respectively. These populations had 77 ± 5% gametophytes (mean ± 95% confidence interval), with most populations having gametophyte : sporophyte ratios ranging from 2 : 1 to 9 : 1. No population had a dominance of tetrasporophytes, although two populations had 1 : 1 ratios. A meta-analysis of our data along with previously published accounts showed no significant changes in gametophyte dominance with respect to hypothesized gradients of wave exposure, salinity, or water depth. Significant changes occurred in ratios at five sites where replicate sampling occurred in different years. We conclude that C. crispus in Maritime Canada has a natural ratio of 3 : 1 or greater in stable conditions, and that lower ratios represent recovery from disturbance in which bare substratum is created that is subsequently colonized by carpospores from remaining gametophytic thalli.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼