RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

        Dawn An,최주호,Nam H. Kim,Sriram Pattabhiraman 국제구조공학회 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.37 No.4

        In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer’s experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed,which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

      • 현장데이터 기반 피로수명 예측을 위한 베이지안 접근법

        안다운(Dawn An),최주호(Jooho Choi),김남호(Nam H. Kim),Pattabhiraman Sriram 대한기계학회 2009 대한기계학회 춘추학술대회 Vol.2009 No.11

        In the design considering fatigue life of mechanical components, uncertainties arising from the materials and manufacturing processes should be taken into account for ensuring reliability. Common practice in the design is to apply safety factor in conjunction with the numerical codes for evaluating the lifetime. This approach. however, most likely relies on the designer's experience. Besides, the predictions often are not in agreement with the real observations during the actual use. In this paper, a more dependable approach based on the Bayesian technique is proposed, which incorporates the field failure data with the prior knowledge to obtain the posterior distribution of the unknown parameters of the fatigue life. Posterior predictive distributions and associated values are estimated afterwards. which represents the degree of our belief of the life conditional on the observed data. As more data are provided, the values will be updated to more confident information. The results can be used in various needs such as a risk analysis, reliability based design optimization. maintenance scheduling. or validation of reliability analysis codes. In order to obtain the posterior distribution. Markov Chain Monte Carlo (MCMC) technique is employed, which is a modern statistical computational method which draws effectively the samples of the given distribution. Field data of turbine components are exploited to illustrate om approach. which counts as a regular inspection the number of failed blades in a turbine disk.

      • SCIESCOPUS

        Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

        An, Dawn,Choi, Joo-Ho,Kim, Nam H.,Pattabhiraman, Sriram Techno-Press 2011 Structural Engineering and Mechanics, An Int'l Jou Vol.37 No.4

        In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼