RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Multi-type, multi-sensor placement optimization for structural health monitoring of long span bridges

        Rohan N. Soman,Toula Onoufriou,Marios A. Kyriakides,Renos A. Votsis,Christis Z. Chrysostomou 국제구조공학회 2014 Smart Structures and Systems, An International Jou Vol.14 No.1

        The paper presents a multi-objective optimization strategy for a multi-type sensor placement for Structural Health Monitoring (SHM) of long span bridges. The problem is formulated for simultaneous placement of strain sensors and accelerometers (heterogeneous network) based on application demands for SHM system. Modal Identification (MI) and Accurate Mode Shape Expansion (AMSE) were chosen as the application demands for SHM. The optimization problem is solved through the use of integer Genetic Algorithm (GA) to maximize a common metric to ensure adequate MI and AMSE. The performance of the joint optimization problem solved by GA is compared with other established methods for homogenous sensor placement. The results indicate that the use of a multi-type sensor system can improve the quality of SHM. It has also been demonstrated that use of GA improves the overall quality of the sensor placement compared to other methods for optimization of sensor placement.

      • SCIESCOPUS

        Layout optimization of wireless sensor networks for structural health monitoring

        Jalsan, Khash-Erdene,Soman, Rohan N.,Flouri, Kallirroi,Kyriakides, Marios A.,Feltrin, Glauco,Onoufriou, Toula Techno-Press 2014 Smart Structures and Systems, An International Jou Vol.14 No.1

        Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

      • KCI등재

        Layout optimization of wireless sensor networks for structural health monitoring

        Khash-Erdene Jalsan,Rohan N. Soman,Kallirroi Flouri,Marios A. Kyriakides,Glauco Feltrin,Toula Onoufriou 국제구조공학회 2014 Smart Structures and Systems, An International Jou Vol.14 No.1

        Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼