RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Phycocyanin Induces Apoptosis and Enhances the Effect of Topotecan on Prostate Cell Line LNCaP

        Miroslav Gantar,Sivanesan Dhandayuthapani,Appu Rathinavelu 한국식품영양과학회 2012 Journal of medicinal food Vol.15 No.12

        C-phycocyanin (C-PC) from Spirulina has been previously shown to have anticancer properties. Here, we report on anticancer activity of C-PC that was isolated from the novel cyanobacterium Limnothrix sp. 37-2-1. C-PC from this organism exhibited anticancer properties in our in vitro systems; however, the required doses were well above the range of anticancer drugs normally used. Therefore, we conducted several experiments to test whether lower-than-usual doses of the anticancer drug topotecan (TPT) can offer the same level of cytotoxic effects as normal doses when combined with C-PC. For this purpose, cytotoxicities of C-PC and TPT were tested using the LNCaP (prostate cancer) cells. We found that when only 10% of a typical dose of TPT was combined with C-PC, the cancer cells were killed at a higher rate than when TPT was used alone at full dose. Similarly, we were also able to detect an increased level of radical oxygen species (ROS) generation as well as an increase in activities of caspase-9 and caspase-3 when these two compounds were used in combination. Taken together, our findings suggest that combining C-PC from Limnothrix sp. with the lower dose of TPT can induce apoptosis through generation of ROS and activation of caspases. In that respect, we suggest that C-PC can potentially improve the efficacy of the currently available anticancer drug, and therefore diminish its harsh side effects in the patient.

      • SCIESCOPUSKCI등재

        Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

        Berthold, David Erwin,Rosa, Nina de la,Engene, Niclas,Jayachandran, Krish,Gantar, Miroslav,Laughinghouse, Haywood Dail IV,Shetty, Kateel G. The Korean Society of Phycology 2020 ALGAE Vol.35 No.1

        Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L<sup>-1</sup> d<sup>-1</sup> dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼