RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Proteomic Signatures of Healthy Intervertebral Discs From Organ Donors: A Comparison With Previous Studies on Discs From Scoliosis, Animals, and Trauma

        Shanmuganathan Rajasekaran,Chitraa Tangavel,Dilip Chand Raja Soundararajan,Sharon Miracle Nayagam,Monica Steffi Matchado,Raveendran Muthurajan,K.S. Sri Vijay Anand,Sunmathi Rajendran,Ajoy Prasad Shett 대한척추신경외과학회 2020 Neurospine Vol.17 No.2

        Objective: To catalog and characterize the proteome of normal human intervertebral disc (IVD). Methods: Nine magnetic resonance imaging (MRI) normal IVDs were harvested from 9 different brain dead yet alive voluntary organ donors and were subjected to electrospray ionization-liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) acquisition. Results: A total of 1,116 proteins were identified. Functional enrichment analysis tool DAVID ver. 6.8 categorized: extracellular proteins (38%), intracellular (31%), protein-containing complex (13%), organelle (9%), membrane proteins (6%), supramolecular complex (2%), and 1% in the cell junction. Molecular function revealed: binding activity (42%), catalytic activity (31%), regulatory activity (14%), and structural activity (7%). Molecular transducer, transporter, and transcription regulator activity together contributed to 6%. A comparison of the proteins obtained from this study to others in the literature showed a wide variation in content with only 3% of bovine, 5% of murine, 54% of human scoliotic discs, and 10.2% of discs adjacent to lumbar burst fractures common to our study of organ donors. Between proteins reported in scoliosis and lumbar fracture patients, only 13.51% were common, further signifying the contrast amongst the various MRI normal IVD samples. Conclusion: The proteome of “healthy” human IVDs has been defined, and our results show that proteomic data on IVDs obtained from scoliosis, fracture patients, and cadavers lack normal physiological conditions and should not be used as biological controls despite normal MRI findings. This questions the validity of previous studies that have used such discs as controls for analyzing the pathomechanisms of disc degeneration.

      • KCI등재

        Proteomic Signature of Nucleus Pulposus in Fetal Intervertebral Disc

        Rajasekaran Shanmuganathan,Soundararajan Dilip Chand Raja,Tangavel Chitraa,K.S. Sri Vijay Anand,Nayagam Sharon Miracle,Matchado Monica Steffi,Muthurajan Raveendran,Shetty Ajoy Prasad,Kanna Rishi Muges 대한척추외과학회 2020 Asian Spine Journal Vol.14 No.4

        Study Design: Profiling proteins expressed in the nucleus pulposus of fetal intervertebral disc (IVD).Purpose: To evaluate the molecular complexity of fetal IVDs not exposed to mechanical, traumatic, inflammatory, or infective insults to generate improved knowledge on disc homeostasis.Overview of Literature: Low back pain is the most common musculoskeletal disorder, causing a significant reduction in the quality of life, and degenerative disc disorders mainly contribute to the increasing socioeconomic burden. Despite extensive research, the causative pathomechanisms behind degenerative disc disorders are poorly understood. Precise molecular studies on the intricate biological processes involved in maintaining normal disc homeostasis are needed.Methods: IVDs of nine fetal specimens obtained from medical abortions were used to dissect out the annulus fibrosus and nucleus pulposus under sterile operating conditions. Dissected tissues were transferred to sterile Cryovials and snap frozen in liquid nitrogen before transporting to the research laboratory for protein extraction and further liquid chromatography tandem mass spectrometry (LC-MS/ MS) analysis. Collected data were further analyzed using Gene Functional Classification Tool in DAVID and STRING databases.Results: A total of 1,316 proteins were identified through LC-MS/MS analysis of nine fetal IVD tissues. Approximately 247 proteins present in at least four fetal discs were subjected to further bioinformatic analysis. The following 10 clusters of proteins were identified: collagens, ribosomal proteins, small leucine-rich proteins, matrilin and thrombospondin, annexins, protein disulfide isomerase family proteins and peroxiredoxins, tubulins, histones, hemoglobin, and prolyl 4-hydroxylase family proteins.Conclusions: This study provides fundamental information on the proteome networks involved in the growth and development of healthy fetal discs in humans. Systematic cataloging of proteins involved in various structural and regulatory processes has been performed. Proteins expressed most abundantly (collagen type XIV alpha 1 chain, biglycan, matrilin 1, and thrombospondin 1) in their respective clusters also elucidate the possibility of utilizing these proteins for potential regenerative therapies.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼