RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Distribution of shear force in perforated shear connectors

        Xing Wei,M. Shariati,Y. Zandi,Shiling Pei,Zhibin Jin,S. Gharachurlu,M.M. Abdullahi,M.M. Tahir,M. Khorami 국제구조공학회 2018 Steel and Composite Structures, An International J Vol.27 No.3

        A perforated shear connector group is commonly used to transfer shear in steel–concrete composite structures when the traditional shear stud connection is not strong enough. The multi-hole perforated shear connector demonstrates a more complicated behavior than the single connector. The internal force distribution in a specific multi-hole perforated shear connector group has not been thoroughly studied. This study focuses on the load-carrying capacity and shear force distribution of multi-hole perforated shear connectors in steel.concrete composite structures. ANSYS is used to develop a three-dimensional finite element model to simulate the behavior of multi-hole perforated connectors. Material and geometric nonlinearities are considered in the model to identify the failure modes, ultimate strength, and load–slip behavior of the connection. A three-layer model is introduced and a closed-form solution for the shear force distribution is developed to facilitate design calculations. The shear force distribution curve of the multi-hole shear connector is catenary, and the efficiency coefficient must be considered in different limit states.

      • KCI등재

        Optical, thermal and gamma ray attenuation characteristics of tungsten oxide modified: B2O3–SrCO3–TeO2–ZnO glass series

        Thabit Hammam Abdurabu,Ismail Abd Khamim,Sayyed M.I.,Hashim S.,Abdullahi I.,Elsafi Mohamed,Keshavamurthy K.,Jagannath G. 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.1

        The glass series modified by tungsten oxide was created using the compounds (75-x) B2O3– 10SrCO3– 8TeO2– 7ZnO - xWO3, where x = 0, 1, 5, 10, 22, 27, 34, and 40% mole percentage. A UV–visible spectrophotometer and thermogravimetric-differential thermal analysis (TG-DTA) methods were employed to characterize the specimen’s optical and phase transition attributes, respectively. The mass-attenuation coefficient (AC) of all created glasses from BSTZW0 to BSTZ7 was estimated using Geant4 code from 0.05 to 3 MeV and compared to the XCOM software results, with a relative difference of less than 2% between the two results. The increase of WO3 percentage lead to an increase in the Linear-AC at each studied energy, and this is mainly due to the fact that the higher the percentage of WO3 in the glass increases its density which causes an increase in the Linear-AC, so an energy of 0.06 MeV, as an example, the values of the Linear-AC was 4.009, 4.509, 5.442, 6812, 8.564, 9.856, 10.999 and 11.628 cm 1 form BSTZW0 too BSTZW7, respectively. The Half-VL (value layer), Mean-FP (free path), Tenth-VL, and Radiation attenuation performance (RAP) were also calculated for the current BSTZW-glass samples and revealed that BSTZW7 had the best gamma ray attenuation performance at all discussed energies when compared to other studied glass samples.

      • KCI등재

        A closer look at the structure and gamma-ray shielding properties of newly designed boro -tellurite glasses reinforced by bismuth (III) oxide

        Thabit Hammam Abdurabu,Ismail Abd Khamim,Yusof N.N.,Sayyed M.I.,Mahmoud K.G.,Abdullahi I.,Hashim S. 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.5

        This work presents the synthesis and preparation of a new glass system described by the equation of (70- x) B2O3e5TeO2 e20SrCO3e5ZnO exBi2O3, x ¼ 0, 1, 5, 10, and 15 mol. %, using the melt quenching technique at a melting temperature of 1100 C. The photon-shielding characteristics mainly the linear attenuation coefficient (LAC) of the prepared glass samples were evaluated using Monte Carlo (MC) simulation N-particle transport code (MCNP-5) at gamma-ray energy extended from 59 keV to 1408 keV emitted by the radioisotopes Am-241, Ba-133, Cs-137, Co-60, Na-22, and Eu-152. Furthermore, we observed that the Bi2O3 content of the glasses had a significantly stronger impact on the LAC at 59 and 356 keV. The study of the lead equivalent thickness shows that the performance of fabricated glass sample with 15 mol.% of Bi2O3 is four times less than the performance of pure lead at low gamma photon energy while it is enhanced and became two times lower the perforce of pure lead at high energy. Therefore, the fabricated glasses special sample with 15 mol.% of Bi2O3 has good shielding properties in low, intermediate, and high energy intervals

      • KCI등재

        Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method

        Ali Toghroli,Ehsan Darvishmoghaddam,Yousef Zandi,Mahdi Parvan,Maryam Safa,Mu’azu Mohammed Abdullahi,Abbas Heydari,Karzan Wakil,Saad A.M. Gebreel,Majid Khorami 사단법인 한국계산역학회 2018 Computers and Concrete, An International Journal Vol.21 No.5

        As a nondestructive testing method, the Schmidt rebound hammer is widely used for structural health monitoring. During application, a Schmidt hammer hits the surface of a concrete mass. According to the principle of rebound, concrete strength depends on the hardness of the concrete energy surface. Study aims to identify the main variables affecting the results of Schmidt rebound hammer reading and consequently the results of structural health monitoring of concrete structures using adaptive neuro-fuzzy inference system (ANFIS). The ANFIS process for variable selection was applied for this purpose. This procedure comprises some methods that determine a subsection of the entire set of detailed factors, which present analytical capability. ANFIS was applied to complete a flexible search. Afterward, this method was applied to conclude how the five main factors (namely, age, silica fume, fine aggregate, coarse aggregate, and water) used in designing concrete mixture influence the Schmidt rebound hammer reading and consequently the structural health monitoring accuracy. Results show that water is considered the most significant parameter of the Schmidt rebound hammer reading. The details of this study are discussed thoroughly.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼