RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Fuzzy modelling approach for shear strength prediction of RC deep beams

        Mohammad Mohammadhassani,Aidi MD. Saleh,M Suhatril,M. Safa 국제구조공학회 2015 Smart Structures and Systems, An International Jou Vol.16 No.3

        This study discusses the use of Adaptive-Network-Based-Fuzzy-Inference-System (ANFIS) in predicting the shear strength of reinforced-concrete deep beams. 139 experimental data have been collected from renowned publications on simply supported high strength concrete deep beams. The results show that the ANFIS has strong potential as a feasible tool for predicting the shear strength of deep beams within the range of the considered input parameters. ANFIS‟s results are highly accurate, precise and therefore, more satisfactory. Based on the Sensitivity analysis, the shear span to depth ratio (a/d) and concrete cylinder strength ( c f′) have major influence on the shear strength prediction of deep beams. The parametric study confirms the increase in shear strength of deep beams with an equal increase in the concrete strength and decrease in the shear span to-depth-ratio.

      • KCI등재

        Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire

        S.E.M. Shahabi,N.H. Ramli Sulong,M. Shariati,M. Mohammadhassani,S.N.R. Shah 국제구조공학회 2016 Steel and Composite Structures, An International J Vol.20 No.3

        The behavior of shear connectors plays a significant role in maintaining the required strength of a composite beam in normal and hazardous conditions. Various types of shear connectors are available and being utilized in the construction industry according to their use. Channel connectors are a suitable replacement for conventional shear connectors. These connectors have been tested under different types of loading at ambient temperature; however, the behavior of these connectors at elevated temperatures has not been studied. This investigation proposes a numerical analysis approach to estimate the behavior of channel connectors under fire andcompare it with the numerical analysis performed in headed stud and Perfobond shear connectors subjected to fire. This paper first reviews the mechanism of various types of shear connectors and then proposes a non-linear thermomechanical finite element (FE) model of channel shear connectors embedded in high-strength concrete (HSC) subjected to fire. Initially, an accurate nonlinear FE model of the specimens tested at ambient temperature was developed to investigate the strength of the channel-type connectors embedded in an HSC slab. The outcomes were verified with the experimental study performed on the testing of channel connectors at ambient temperature by Shariati <i>et al</i>. (2012). The FE model at ambient temperature was extended to identify the behavior of channel connectors subjected to fire. A comparative study is performed to evaluate the performance of channel connectors against headed stud and Perfobond shear connectors. The channel connectors were found to be a more economical and easy-to-apply alternative to conventional shear connectors.

      • KCI등재후보

        Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams

        Mohammad Mohammadhassani,Hossein Nezamabadi-Pour,Mohd. Zamin Jumaat,Mohammed Jameel,Arul M S Arumugam 사단법인 한국계산역학회 2013 Computers and Concrete, An International Journal Vol.11 No.3

        This paper presents the application of artificial neural network (ANN) to predict deep beam deflection using experimental data from eight high-strength-self-compacting-concrete (HSSCC) deep beams. The optimized network architecture was ten input parameters, two hidden layers, and one output. The feed forward back propagation neural network of ten and four neurons in first and second hidden layers using TRAINLM training function predicted highly accurate and more precise load-deflection diagrams compared to classical linear regression (LR). The ANN’s MSE values are 40 times smaller than the LR’s. The test data R value from ANN is 0.9931; thus indicating a high confidence level.

      • KCI등재

        Computational optimized finite element modelling of mechanical interaction of concrete with fiber reinforced polymer

        Khosro Shahpoori Arani,Yousef Zandi,Binh Thai Pham,M.A. Mu’azu,Javad Katebi,Mohammad Mohammadhassani,Seyedamirhesam Khalafi,Edy Tonnizam Mohamad,Karzan Wakil,Majid Khorami 사단법인 한국계산역학회 2019 Computers and Concrete, An International Journal Vol.23 No.1

        This paper presents a computational rational model to predict the ultimate and optimized load capacity of reinforced concrete (RC) beams strengthened by a combination of longitudinal and transverse fiber reinforced polymer (FRP) composite plates/sheets (flexure and shear strengthening system). Several experimental and analytical studies on the confinement effect and failure mechanisms of fiber reinforced polymer (FRP) wrapped columns have been conducted over recent years. Although typical axial members are large-scale square/ rectangular reinforced concrete (RC) columns in practice, the majority of such studies have concentrated on the behavior of small-scale circular concrete specimens. A high performance concrete, known as polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with non-metallic bars (glass reinforced polymer) has been studied. The material is described at micro and macro level, presenting the key physical and mechanical properties using different experimental techniques. Furthermore, a full description of non-metallic bars is presented to evaluate its structural expectancies, embedded in the polymer concrete matrix. In this paper, the mechanism of mechanical interaction of smooth and lugged FRP rods with concrete is presented. A general modeling and application of various elements are demonstrated. The contact parameters are defined and the procedures of calculation and evaluation of contact parameters are introduced. The method of calibration of the calculated parameters is presented. Finally, the numerical results are obtained for different bond parameters which show a good agreement with experimental results reported in literature.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼