RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Traceable Ciphertet-Policy Attribute-Based Encryption with Constant Decryption

        ( Guangbo Wang ),( Feng Li ),( Pengcheng Wang ),( Yixiao Hu ) 한국인터넷정보학회 2021 KSII Transactions on Internet and Information Syst Vol.15 No.9

        We provide a traceable ciphertext-policy attribute based encryption (CP-ABE) construction for monotone access structures (MAS) based on composite order bilinear groups, which is secure adaptively under the standard model. We construct this scheme by making use of an "encoding technique" which represents the MAS by their minimal sets to encrypt the messages. To date, for all traceable CP-ABE schemes, their encryption costs grow linearly with the MAS size, the decryption costs grow linearly with the qualified rows in the span programs. However, in our traceable CP-ABE, the ciphertext is linear with the minimal sets, and decryption needs merely three bilinear pairing computations and two exponent computations, which improves the efficiency extremely and has constant decryption. At last, the detailed security and traceability proof is given.

      • KCI등재

        Recent advance of single atom-based photocatalysts for energy conversion and environmental purification

        Niu Yaling,Yue Chengcai,Li Shuqi,Che Guangbo,Su Nan,Dong Hongjun,Li Chunmei 한국탄소학회 2023 Carbon Letters Vol.33 No.4

        Developing the high-performance semiconductor photocatalytic materials is an eternal topic under the background of the current energy and environment requirements. In recent years, single-atom photocatalysts (SAPCs) have been brought a lot of attention in energy conversion and environmental purification because of their unique characteristics and properties, including the unique coordination patterns, outstanding atomic utilization, quantum confinement effects, high catalytic activity, etc. Hence, this critical review focuses on the summarized various synthetic methods and the recent important applications of SAPCs, including photocatalytic H2 evolution (PHE) from water splitting, photocatalytic CO2 reduction, photodegradation of organic pollutants, etc. The prospects and challenges for future research topics of SAPCs with excellent activity and stability for various photocatalytic applications are prospected at the end of this review. We sincerely expect that this critical review can promote deep-level insight into the SAPCs subject for the future significant applications in other fields.

      • KCI등재

        Alpha-Hemolysin from Staphylococcus aureus Obstructs Yeast-Hyphae Switching and Diminishes Pathogenicity in Candida albicans

        Yu Xiaoyu,Mao Yinhe,Li Guangbo,Wu Xianwei,Xuan Qiankun,Yang Simin,Chen Xiaoqing,Cao Qi,Guo Jian,Guo Jinhu,Wu Wenjuan 한국미생물학회 2023 The journal of microbiology Vol.61 No.2

        The use of antibiotics can disrupt the body’s natural balance and increase the susteptibility of patients towards fungal infections. Candida albicans is a dimorphic opportunistic fungal pathogen with niches similar to those of bacteria. Our aim was to study the interaction between this pathogen and bacteria to facilitate the control of C. albicans infection. Alpha-hemolysin (Hla), a protein secreted from Staphylococcus aureus, causes cell wall damage and impedes the yeast–hyphae transition in C. albicans. Mechanistically, Hla stimulation triggered the formation of reactive oxygen species that damaged the cell wall and mitochondria of C. albicans. The cell cycle was arrested in the G0/G1 phase, CDC42 was downregulated, and Ywp1 was upregulated, disrupting yeast hyphae switching. Subsequently, hyphae development was inhibited. In mouse models, C. albicans pretreated with Hla reduced the C. albicans burden in skin and vaginal mucosal infections, suggesting that S. aureus Hla can inhibit hyphal development and reduce the pathogenicity of candidiasis in vivo.

      • KCI등재

        Accuracy modeling, analysis and radical error distribution of 3-RPR planar parallel mechanism

        Jian Ding,Changlong Ye,Suyang Yu,Jianguang Li,Jinguo Liu,Guangbo Hao 대한기계학회 2022 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.36 No.11

        Output accuracy performance is directly determined by geometric errors and working poses of a mechanism. Accuracy sensitivity as geometric error transmission coefficient, closely relates to pose configuration and geometric parameters. This research focuses on accuracy of a 3-RPR planar parallel mechanism: firstly, established 3 models in an analytic form, to describe relationship between output errors and geometric ones, then they are mutually verified statistically. Secondly, the anisotropy and periodic fluctuation of position errors, independently contributed by each category of geometric errors, are illustrated; and mirror symmetric trajectories and poses generating output errors with mirror symmetry, are also revealed by numerical simulation. Finally, the radical accuracy model in an analytic form, was established through variance and covariance analysis on output errors. We concluded that the radical error of the movable platform in central symmetric poses, follows Rayleigh distribution pattern. Through statistical comparison with Monte Carlo simulation, the radical error model was demonstrated, that provided a reference for accuracy design for other planar parallel mechanism.

      • KCI등재

        An S-scheme photocatalyst constructed by modifying Ni-doped Sn3O4 micro-flowers on g-C3N4 nanosheets for enhanced visible-light-driven hydrogen evolution

        Dandan Wang,Zhaoxin Lin,Chun Miao,Wei Jiang,Hongji Li,Chunbo Liu,Guangbo Che 한국공업화학회 2022 Journal of Industrial and Engineering Chemistry Vol.113 No.-

        Carbon nitrides (g-C3N4) is considered to be the prospective semiconductor photocatalyst for photocatalytic H2 evolution. Nevertheless, it suffers from low charge transfer efficiency and fewer metal active sites. Thereby, Ni-Sn3O4/g-C3N4 photocatalysts were constructed by anchoring Ni-doped Sn3O4 micro-flowers on g-C3N4 via a feasible and straightforward solvothermal treatment. The prepared Ni-Sn3O4/g-C3N4 S-scheme heterojunction could improve the transfer and separation efficiency of photo-generated electron-hole pairs by facilitating the electrons transfer from Ni-Sn3O4 to g-C3N4. Moreover, the photocatalytic H2 production performance was ameliorated due to the established internal electric field and the energy band bending in Ni-Sn3O4/g-C3N4 S-scheme heterojunction. Meanwhile, the doping Ni in Sn3O4 exposed more active sites in Ni-Sn3O4/g-C3N4 heterojunction for producing H2. As a result, Ni-Sn3O4/g-C3N4-5 photocatalyst exhibited outstanding H2 yields of 1961 µmol h−1 g−1 under visible light irradiation in comparison with pure Ni-Sn3O4 (12 µmol h−1 g−1) and bared g-C3N4 (1391 µmol h−1 g−1). Furthermore, the S-scheme mechanism in Ni-Sn3O4/g-C3N4 heterojunction for producing H2 by oxidizing H2O was proposed. This study provides helpful guide for developing efficient g-C3N4-based photocatalytic systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼