RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        C-Type Natriuretic Peptide/Natriuretic Peptide Receptor 2 Is Involved in Cell Proliferation and Testosterone Production in Mouse Leydig Cells

        Lei Yang,Lanjie Lei,Qihan Zhao,Ying Gong,Gaopeng Guan,Shaoxin Huang 대한남성과학회 2019 The World Journal of Men's Health Vol.37 No.2

        Purpose: This study investigated the role of natriuretic peptide receptor 2 (NPR2) on cell proliferation and testosterone secre-tion in mouse Leydig cells.Materials and Methods: Mouse testis of different postnatal stages was isolated to detect the expression C-type natriuretic peptide (CNP) and its receptor NPR2 by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Leydig cells isolated from mouse testis were cultured and treated with shNPR2 lentiviruses or CNP. And then the cyclic guanosine mono-phosphate production, testosterone secretion, cell proliferation, cell cycle and cell apoptosis in mouse Leydig cells were ana-lyzed by ELISA, RT-qPCR, Cell Counting Kit-8, and flow cytometry. Moreover, the expression of NPR2, cell cycle, apoptosis proliferation and cell cycle related gene were detected by RT-qPCR and Western blot. Results: Knockdown of NPR2 by RNAi resulted in S phase cell cycle arrest, cell apoptosis, and decreased testosterone secre-tion in mouse Leydig cells.Conclusions: Our study provides more evidences to better understand the function of CNP/NPR2 pathway in male reproduc-tion, which may help us to treat male infertility.

      • KCI등재

        Emerging 3D bioprinting applications in plastic surgery

        Yang Pu,Ju Yikun,Hu Yue,Xie Xiaoyan,Fang Bairong,Lei Lanjie 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Plastic surgery is a discipline that uses surgical methods or tissue transplantation to repair, reconstruct and beautify the defects and deformities of human tissues and organs. Three-dimensional (3D) bioprinting has gained widespread attention because it enables fine customization of the implants in the patient's surgical area preoperatively while avoiding some of the adverse reactions and complications of traditional surgical approaches. In this paper, we review the recent research advances in the application of 3D bioprinting in plastic surgery. We first introduce the printing process and basic principles of 3D bioprinting technology, revealing the advantages and disadvantages of different bioprinting technologies. Then, we describe the currently available bioprinting materials, and dissect the rationale for special dynamic 3D bioprinting (4D bioprinting) that is achieved by varying the combination strategy of bioprinting materials. Later, we focus on the viable clinical applications and effects of 3D bioprinting in plastic surgery. Finally, we summarize and discuss the challenges and prospects for the application of 3D bioprinting in plastic surgery. We believe that this review can contribute to further development of 3D bioprinting in plastic surgery and provide lessons for related research. Graphical Abstract

      • KCI등재

        Advancing Organoid Engineering for Tissue Regeneration and Biofunctional Reconstruction

        Hairong Jin,Zengqi Xue,Jinnv Liu,Binbin Ma,Jianfeng Yang,Lanjie Lei 한국생체재료학회 2024 생체재료학회지 Vol.28 No.00

        Tissue damage and functional abnormalities in organs have become a considerable clinical challenge. Organoids are often applied as disease models and in drug discovery and screening. Indeed, several studies have shown that organoids are an important strategy for achieving tissue repair and biofunction reconstruction. In contrast to established stem cell therapies, organoids have high clinical relevance. However, conventional approaches have limited the application of organoids in clinical regenerative medicine. Engineered organoids might have the capacity to overcome these challenges. Bioengineering—a multidisciplinary field that applies engineering principles to biomedicine—has bridged the gap between engineering and medicine to promote human health. More specifically, bioengineering principles have been applied to organoids to accelerate their clinical translation. In this review, beginning with the basic concepts of organoids, we describe strategies for cultivating engineered organoids and discuss the multiple engineering modes to create conditions for breakthroughs in organoid research. Subsequently, studies on the application of engineered organoids in biofunction reconstruction and tissue repair are presented. Finally, we highlight the limitations and challenges hindering the utilization of engineered organoids in clinical applications. Future research will focus on cultivating engineered organoids using advanced bioengineering tools for personalized tissue repair and biofunction reconstruction.

      • KCI등재

        Microenvironment Remodeling Self-Healing Hydrogel for Promoting Flap Survival

        Yikun Ju,Pu Yang,Xiangjun Liu,Zhihua Qiao,Naisi Shen,Lanjie Lei,Bairong Fang 한국생체재료학회 2024 생체재료학회지 Vol.28 No.00

        Random flap grafting is a routine procedure used in plastic and reconstructive surgery to repair and reconstruct large tissue defects. Flap necrosis is primarily caused by ischemia–reperfusion injury and inadequate blood supply to the distal flap. Ischemia–reperfusion injury leads to the production of excessive reactive oxygen species, creating a pathological microenvironment that impairs cellular function and angiogenesis. In this study, we developed a microenvironment remodeling self-healing hydrogel [laminarin–chitosan-based hydrogel-loaded extracellular vesicles and ceria nanozymes (LCH@EVs&CNZs)] to improve the flap microenvironment and synergistically promote flap regeneration and survival. The natural self-healing hydrogel (LCH) was created by the oxidation laminarin and carboxymethylated chitosan via a Schiff base reaction. We loaded this hydrogel with CNZs and EVs. CNZs are a class of nanomaterials with enzymatic activity known for their strong scavenging capacity for reactive oxygen species, thus alleviating oxidative stress. EVs are cell-secreted vesicular structures containing thousands of bioactive substances that can promote cell proliferation, migration, differentiation, and angiogenesis. The constructed LCH@EVs&CNZs demonstrated a robust capacity for scavenging excess reactive oxygen species, thereby conferring cellular protection in oxidative stress environments. Moreover, these constructs notably enhance cell migration and angiogenesis. Our results demonstrate that LCH@EVs&CNZs effectively remodel the pathological skin flap microenvironment and marked improve flap survival. This approach introduces a new therapeutic strategy combining microenvironmental remodeling with EV therapy, which holds promise for promoting flap survival.

      • KCI등재

        Emerging Biomaterials for Tumor Immunotherapy

        Minna Xiao,Qinglai Tang,Shiying Zeng,Qian Yang,Xinming Yang,Xinying Tong,Gangcai Zhu,Lanjie Lei,Shisheng Li 한국생체재료학회 2023 생체재료학회지 Vol.27 No.00

        Background The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. Main body This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. Conclusion Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.

      • KCI등재

        Biomaterial-Based CRISPR/Cas9 Delivery Systems for Tumor Treatment

        Mengmeng Li,Fenglei Chen,Qian Yang,Qinglai Tang,Zian Xiao,Xinying Tong,Ying Zhang,Lanjie Lei,Shisheng Li 한국생체재료학회 2024 생체재료학회지 Vol.28 No.00

        CRISPR/Cas9 gene editing technology is characterized by high specificity and efficiency, and has been applied to the treatment of human diseases, especially tumors involving multiple genetic modifications. However, the clinical application of CRISPR/Cas9 still faces some major challenges, the most urgent of which is the development of optimized delivery vectors. Biomaterials are currently the best choice for use in CRISPR/Cas9 delivery vectors owing to their tunability, biocompatibility, and efficiency. As research on biomaterial vectors continues to progress, hope for the application of the CRISPR/Cas9 system for clinical oncology therapy builds. In this review, we first detail the CRISPR/Cas9 system and its potential applications in tumor therapy. Then, we introduce the different delivery forms and compare the physical, viral, and non-viral vectors. In addition, we analyze the characteristics of different types of biomaterial vectors. We further review recent research progress in the use of biomaterials as vectors for CRISPR/Cas9 delivery to treat specific tumors. Finally, we summarize the shortcomings and prospects of biomaterial-based CRISPR/Cas9 delivery systems.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼