http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
A Study on Brand Image Analysis of Gaming Business Corporation using KoBERT and Twitter Data
Hyunji Kim 한국게임학회 2021 한국게임학회 논문지 Vol.21 No.6
브랜드 이미지는 고객, 이해관계자, 시장 전체가 해당 브랜드를 어떻게 보고 인지하는지를 뜻한다. 긍정적 브랜드 이미지는 계속적인 구매를 유발하지만, 부정적인 브랜드 이미지는 구매를 중단하게 만드는 등 소비자의 구매행동에 직결되기 때문에, 기업 입장에서는 빠르고 정확히 파악할 필요가 있다. 현재 브랜드 이미지를 조사하는 방법으로는 설문조사, SNS조사 등이 있는데, 표본의 수가 한정되고 시간과 비용이 많이 소요된다는 이슈가 있다. 따라서 본 연구에서는 딥러닝 기반의 KoBERT 모델을 활용하여 소셜미디어 상의 텍스트 데이터에 대한 감성분석을 실시한 후, 이를 브랜드 이미지 분석에 활용하는 방법을 제시하고, 이에 대한 성능을 검증하였다. 결과적으로, 다섯 개의 브랜드 이미지 순위를 매긴 결과가 한국기업평판연구소의 순위와 일치함으로써 본 연구의 사용성을 입증하였다. Brand image refers to how customers, stakeholders and the market see and recognize the brand. A positive brand image leads to continuous purchases, but a negative brand image is directly linked to consumers" buying behavior, such as stopping purchases, so from the corporate perspective, it needs to be quickly and accurately identified. Currently, methods of investigating brand images include surveys and SNS surveys, which have limited number of samples and are time-consuming and costly. Therefore, in this study, we are going to conduct an emotional analysis of text data on social media by utilizing the machine learning based KoBERT model, and then suggest how to use it for game corporate brand image analysis and verify its performance. The result has proved some degree of usability showing the same ranking within five brands when compared with the BRI Korea’s brand reputation ranking.